Skip to main content
Log in

Insights into Regulating Mechanism of Mutagenesis Strains of Elizabethkingia meningoseptica sp. F2 by Omics Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Vitamin K2 plays an important role in electron transport, blood coagulation, and calcium homeostasis, and researchers have been trying to use microbes to produce it. Although our previous studies have shown that gradient radiation, breeding, and culture acclimation can improve vitamin K2 production in Elizabethkingia meningoseptica, the mechanism is still unclear. This study is the first which performs genome sequencing of E. meningoseptica sp. F2 as a basis for subsequent experiments and further comparative analyses with other strains. Comparative metabolic pathway analysis of E. meningoseptica sp. F2, E. coli, Bacillus subtilis, and other vitamin K2 product strains revealed that the mevalonate pathway of E. meningoseptica sp. F2 is different in bacteria at the system level. The expressions of menA, menD, menH, and menI in the menaquinone pathway and idi, hmgR, and ggpps in the mevalonate pathway were higher than those in the original strain. A total of 67 differentially expressed proteins involved in the oxidative phosphorylation metabolic pathway and citric acid cycle (TCA cycle) were identified. Our results reveal that combined gradient radiation breeding and culture acclimation can promote vitamin K2 accumulation probably by regulating the vitamin K2 pathway, oxidative phosphorylation metabolism pathway, and the citrate cycle (TCA cycle).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code Availability

Not applicable.

References

  1. Schurgers LJ, Knapen MHJ, Vermeer CJICS (2007) Vitamin K2 improves bone strength in postmenopausal women. Intl Cong Ser 1297:179–187. https://doi.org/10.1016/j.ics.2006.08.006

    Article  CAS  Google Scholar 

  2. Vermeer C, Schurgers LJJHoCoNA (2000) A comprehensive review of vitamin K and vitamin K antagonists. Hematol Oncol Clin N 14:339–353. https://doi.org/10.1016/S0889-8588(05)70137-4

  3. Wen L, Chen J, Duan L, Li SJMMR (2018) Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep 18. https://doi.org/10.3892/mmr.2018.8940

  4. Bhalerao S, Clandinin TR (2012) Vitamin K2 takes charge. Science 336:1241–1242. https://doi.org/10.1126/science.1223812

    Article  CAS  PubMed  Google Scholar 

  5. Michio K, Eeshwaraiah B (2010) Vitamin K2 in electron transport system: Are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules 15:1531–1553. https://doi.org/10.3390/molecules15031531

    Article  CAS  Google Scholar 

  6. Vermeer C (2012) Vitamin K: The effect on health beyond coagulation-an overview. Food Nutr Res 56:5329–5334. https://doi.org/10.3402/fnr.v56i0.5329

    Article  CAS  Google Scholar 

  7. Walther B, Karl JP, Booth SL, Boyaval P (2013) Menaquinones, bacteria, and the food supply: The relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 4:463–473. https://doi.org/10.3945/an.113.003855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jean SS, Hsieh TC, Ning YZ, Hsueh PR (2017) Role of vancomycin in the treatment of bacteraemia and meningitis caused by Elizabethkingia meningoseptica. Int J Antimicrob AG 50. https://doi.org/10.1016/j.ijantimicag.2017.06.021

  9. Kim KK, Kim MK, Lim JH, Park HY, Lee ST. (2005) Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol. 55:1287–93. https://doi.org/10.1099/ijs.0.63541-0

  10. Tani Y, Asahi S, Yamada H (1984) Vitamin K2 (Menaquinone) - Screening of producing microorganisms and production by flavobacterium–meningosepticum. J Ferment Technol 62:321–327

  11. Taguchi H, Shibata T, Tani Y (1995) Selective release of menaquinone-4 from cells of a mutant of flavobacterium sp 238–7 with a detergent. Biosci Biotech Bioch 59:1137–1138. https://doi.org/10.1271/bbb.59.1137

    Article  CAS  Google Scholar 

  12. Taguchi H, Shibata T, Duangmanee C, Tani Y (1989) Menaquinone-4 production by a sulfonamide: Resistant mutant of flavobacterium SP 238–7. Agric Biol Chem 53:3017–3023

    CAS  Google Scholar 

  13. Cunningham MJ (2019) OMICS Technologies

  14. Chen S, Soehnlen M, Blom J, Terrapon N, Henrissat B, Walker E (2019) Comparative genomic analyses reveal diverse virulence factors and antimicrobial resistance mechanisms in clinical Elizabethkingia meningoseptica strains. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0222648

  15. Naidenov B, Lim A (2019) Pan-genomic and polymorphic driven prediction of antibiotic resistance in Elizabethkingia. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01446

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schena L, Nigro F, Ippolito A, Gallitelli D (2004) Real-time quantitative PCR: A new technology to detect and study phytopathogenic and antagonistic fungi. Eur J Plant Pathol 110:893–908

    Article  CAS  Google Scholar 

  17. Silva N, Ivamoto S, Camargo P, Rosa R, Pereira L, Domingues D (2020) Low-copy genes in terpenoid metabolism: The evolution and expression of MVK and DXR genes in angiosperms. Plants 9:525. https://doi.org/10.3390/plants9040525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang C, Fengguang Z, Lin Y, Zheng S, Liang S, Han S (2018) RNA-Seq analysis of global transcriptomic changes suggests a role for the MAPK pathway and carbon metabolism in cell wall maintenance in a Saccharomyces cerevisiae FKS1 mutant. Biochem Bioph Res Co 500

  19. Chen C, Zheng Y, Zhong Y, Wu Y, Li Z, Xu L-A, Xu M (2018) Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genomics 19. https://https://doi.org/10.1186/s12864-018-4941-1

  20. A XMT, A JLG, A LC, B CLHJJoP, Analysis B (2020) Application for proteomics analysis technology in studying animal-derived traditional Chinese medicine: A review. J Pharmaceut Biomed 191. https://doi.org/10.1016/j.jpba.2020.113609

  21. Wu W, Wang G, Baek S, Shen R-F (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–658. https://doi.org/10.1021/pr050405o

    Article  CAS  PubMed  Google Scholar 

  22. Wu H, Wang H, Wang P, Zhao G, Zheng Z (2021) Gradient radiation breeding and culture domestication of menaquinone producing strains. Bioproc Biosyst Eng 44. https://doi.org/10.1007/s00449-021-02508-8

  23. Fang X, Yang Q, Liu H, Wang P, Wang L, Zheng Z, Zhao G (2018) Effects of a combined processing technology involving ultrasound and surfactant on the metabolic synthesis of vitamin K2 by Flavobacterium sp. M1–14. Chem Eng Process 135. https://doi.org/10.1016/j.cep.2018.09.010

  24. Bauer AW, Kirby WMM, Sherris JCA, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Tech bul Reg Med Tech 36:49–52. https://doi.org/10.1093/ajcp/45.4_ts.493

    Article  CAS  Google Scholar 

  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lowe T, Eddy S (1997) tRNAscan-SE: A program for improved detection of transfer RNA Genes in genomic sequence. Nucleic Acids Res 25. https://doi.org/10.1093/nar/25.5.0955

  27. Rocha D, Santos C, Pacheco L (2015) Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis. Anton Leeuw Int J G 108. https://doi.org/10.1007/s10482-015-0524-1

  28. Livak K, Schmittgen T (2002) Analysis of relative gene expression data using real-time quantitative PCR. Methods (San Diego, Calif.) 25:402–408. https://doi.org/10.1006/meth.2001.1262

  29. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: An information aesthetic for comparative genomics. Genome Res 19:1639–1645. https://doi.org/10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coenye T (2003) (2003) Extracting phylogenetic information from whole-genome sequencing projects: the lactic acid bacteria as a test case. Microbiology 149:3507–3517. https://doi.org/10.1099/mic.0.26515-0

    Article  CAS  PubMed  Google Scholar 

  31. Woese CR, Kandler OML, Wheelis ML (1990) Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87:4576–4579. https://doi.org/10.1073/pnas.87.12.4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Markus Lange B, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177. https://doi.org/10.1073/pnas.240454797

    Article  PubMed Central  Google Scholar 

  33. Wei H, Zhao G, Liu H, Wang H, Ni W, Wang P, Zheng Z (2017) A simple and efficient method for the extraction and separation of menaquinone homologs from wet biomass of Flavobacterium. Bioproc Biosyst Eng. https://doi.org/10.1007/s00449-017-1851-6

    Article  Google Scholar 

  34. Wei H, Wang L, Zhao G, Fang Z, Wu H, Wang P (2018) Zheng Z (2018) Extraction, purification and identification of menaquinones from Flavobacterium meningosepticum fermentation medium. Process Biochem 66:245–253. https://doi.org/10.1016/j.procbio.2018.01.007

    Article  CAS  Google Scholar 

  35. Yang Q, Zheng Z, Zhao G, Wang L, Wang H, Ni W, Sun X, Zhang M, Tang H, Wang P (2002) Cloning and functional characterization of the geranylgeranyl diphosphate synthase(GGPPS)from Elizabethkingia meningoseptica sp.F2. Protein Expres Purif 189:105986. https://doi.org/10.1016/j.pep.2021.105986

  36. Shaomei Y, Yingxiu C, Liming S, Congfa Li, Xue L (2018) Modular pathway engineering of Bacillus subtilis to promote de novo biosynthesis of menaquinone-7. Acs Synth Biol. https://doi.org/10.1021/acssynbio.8b00258

    Article  Google Scholar 

  37. Xu JZ, Yan WL, Zhang WG (2017) Enhancing menaquinone-7 production in recombinant Bacillus amyloliquefaciens by metabolic pathway engineering. RSC Adv 7:28527–28534. https://doi.org/10.1039/C7RA03388E

    Article  CAS  Google Scholar 

  38. Min KK, Lee PC (2011) Metabolic engineering of menaquinone 8 pathway of Escherichia coli as a microbial platform for vitamin K production. Biotechnol Bioeng 108:1997–2002. https://doi.org/10.1002/bit.23142

    Article  CAS  Google Scholar 

  39. Pitera D, Paddon C, Newman J, Keasling J (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207. https://doi.org/10.1016/j.ymben.2006.11.002

  40. Chang M, Keasling J (2007) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681. https://doi.org/10.1038/nchembio836

    Article  CAS  Google Scholar 

  41. Jones RW, Garland PB (1982) The function of Ubiquinone and Menaquinone in the respiratory chain of Escherichia coli. Fun Quin E Cons Syst 465–476. https://doi.org/10.1016/B978-0-12-701280-3:50039-6

  42. Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. BBA-Bioenergetics 1320:217–234. https://doi.org/10.1016/S0005-2728(97)00034-0

    Article  CAS  PubMed  Google Scholar 

  43. Yang Q, Zheng Z, Zhao G, Wang L, Wang H, Ding X, Jiang C, Li C, Ma G, Wang P (2022) Engineering microbial consortia of Elizabethkingia meningoseptica and Escherichia coli strains for the biosynthesis of vitamin K2. Microb Cell Fact 21:37. https://doi.org/10.1186/s12934-022-01768-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was sponsored by financial support from National Natural Science Foundation of China (32070088), the China National Key Research and Development Programme (2019YFA0904300, 2019YFA0904304), Key Research and Development Plan of Anhui Province (1804b06020342), Major Projects of Science and Technology of Anhui Province (202103a06020003), and Natural Science Foundation of Anhui Province (1908085MB48 and 1908085MB43).

Author information

Authors and Affiliations

Authors

Contributions

ZZM and ZGH designed this study. YQ performed the research, analyzed the data, and wrote the paper; WP and WL participated in data analysis, figure preparation, and manuscript writing. WH and ZMX revised the manuscript.

Corresponding authors

Correspondence to Zhiming Zheng or Genhai Zhao.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals.

Conflicts of Interest

All authors declare no conflicts of interest.

Consent to Participate

Not Applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5810 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Zheng, Z., Wang, P. et al. Insights into Regulating Mechanism of Mutagenesis Strains of Elizabethkingia meningoseptica sp. F2 by Omics Analysis. Curr Microbiol 80, 183 (2023). https://doi.org/10.1007/s00284-023-03270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03270-8

Navigation