Skip to main content
Log in

The Antibacterial Effect of Ciprofloxacin Loaded Calcium Carbonate (CaCO3) Nanoparticles Against the Common Bacterial Agents of Osteomyelitis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the biocompatibility, antibacterial/anti-biofilm effects of ciprofloxacin-loaded calcium carbonate (Cip- loaded CaCO3) nanoparticles against the common organisms responsible for osteomyelitis. The antibacterial and biofilm inhibitory activities were studied by determination of minimum inhibitory concentrations (MICs) and minimum biofilm inhibitory concentrations (MBICs), respectively. Hemolytic effects were determined for studying hemocompatibility. The SDS-PAGE method was used to study the interaction of Cip- loaded CaCO3 with plasma proteins. The effects of Cip- loaded CaCO3 on the cell viability of human bone marrow mesenchymal stem cells (hBM-MSCs) was detected. The Cip- loaded CaCO3 nanoparticles were shown a significant antimicrobial effect at lower concentrations than free ciprofloxacin. No significant hemolytic effect was observed. The Cip- loaded CaCO3 nanoparticles have shown interaction with apolipoprotein A1 (28 kDa) and albumin (66.5 kDa). The viability of hBM-MSCs treated with Cip- loaded CaCO3 was more than 96%. Our results indicated that Cip-loaded CaCO3 nanoparticles had favorable in vitro compatibility with human red blood cells, antimicrobial effects, and low cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Kavanagh N, Ryan EJ, Widaa A, Sexton G, Fennell J, O’rourke S, Cahill KC, Kearney CJ, O’Brien FJ, Kerrigan SW (2018) Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev 31:e00084-e117. https://doi.org/10.1128/cmr.00084-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hake M, Oh J-K, Kim J, Ziran B, Smith W, Hak D, Mauffrey C (2015) Difficulties and challenges to diagnose and treat post-traumatic long bone osteomyelitis. Eur J Orthop Surg Traumatol 25:1–3. https://doi.org/10.1007/s00590-014-1576-z

    Article  CAS  PubMed  Google Scholar 

  3. Lew DP, Waldvogel FA (2004) Osteomyelitis Lancet 364:369–379. https://doi.org/10.1016/S0140-6736(04)16727-5

    Article  CAS  PubMed  Google Scholar 

  4. Nandi SK, Bandyopadhyay S, Das P, Samanta I, Mukherjee P, Roy S, Kundu B (2016) Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv 34:1305–1317. https://doi.org/10.1016/j.biotechadv.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  5. Holtom PD, Pavkovic SA, Bravos PD, Patzakis MJ, Shepherd LE, Frenkel B (2000) Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro. J Orthop Res 18:721–727. https://doi.org/10.1002/jor.1100180507

    Article  CAS  PubMed  Google Scholar 

  6. Krishnan AG, Jayaram L, Biswas R, Nair M (2015) Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded gelatin–hydroxyapatite scaffolds as a local drug delivery system for osteomyelitis treatment. Tissue Eng Part A 21:1422–1431. https://doi.org/10.1089/ten.tea.2014.0605

    Article  CAS  PubMed  Google Scholar 

  7. Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215. https://doi.org/10.1016/j.jconrel.2008.05.020

    Article  CAS  PubMed  Google Scholar 

  8. Memar MY, Adibkia K, Farajnia S, Kafil HS, Dizaj SM, Ghotaslou R (2019) Biocompatibility, cytotoxicity and antimicrobial effects of gentamicin-loaded CaCO3 as drug delivery to osteomyelitis. J Drug Deliv Sci Technol 54:101307. https://doi.org/10.1016/j.jddst.2019.101307

    Article  CAS  Google Scholar 

  9. Maleki Dizaj S, Sharifi S, Ahmadian E, Eftekhari A, Adibkia K, Lotfipour F (2019) An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv 16:331–345. https://doi.org/10.1080/17425247.2019.1587408

    Article  CAS  PubMed  Google Scholar 

  10. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan M-H, Adibkia K (2016) Physicochemical characterization and antimicrobial evaluation of gentamicin-loaded CaCO3 nanoparticles prepared via microemulsion method. J Drug Deliv Sci Technol 35:16–23. https://doi.org/10.1016/j.jddst.2016.05.004

    Article  CAS  Google Scholar 

  11. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan M-H, Adibkia K (2015) Box-Behnken experimental design for preparation and optimization of ciprofloxacin hydrochloride-loaded CaCO3 nanoparticles. J Drug Deliv Sci Technol 29:125–131. https://doi.org/10.1016/j.jddst.2015.06.015

    Article  CAS  Google Scholar 

  12. Alvarez H, Castro C, Moujir L, Perera A, Delgado A, Soriano I, Evora C, Sanchez E (2008) Efficacy of ciprofloxacin implants in treating experimental osteomyelitis. J Biomed Mater Res B Appl Biomater 85:93–104. https://doi.org/10.1002/jbm.b.30921

    Article  CAS  PubMed  Google Scholar 

  13. Maleki Dizaj S, Lotfipour F, Barzegar-Jalali M, Zarrintan M-H, Adibkia K (2017) Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: preparation, solid state characterization, and evaluation of antimicrobial effect against Staphylococcus aureus. Artif Cells Nanomed Biotechnol 45:535–543. https://doi.org/10.3109/21691401.2016.1161637

    Article  CAS  PubMed  Google Scholar 

  14. Mahon CR, Lehman DC, ManuselisG, (2018) Textbook of diagnostic microbiology-e-book. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  15. Akhi MT, Ghotaslou R, Alizadeh N, Yekani M, Beheshtirouy S, Asgharzadeh M, Pirzadeh T, Memar MY (2017) nim gene-independent metronidazole-resistant Bacteroides fragilis in surgical site infections. GMS Hyg Infect Control. https://doi.org/10.3205/dgkh000298

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jenkins C, Ling CL, Ciesielczuk HL, Lockwood J, Hopkins S, McHugh TD, Gillespie SH, Kibbler CC (2012) Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice. J Med Microbiol 61:483–488. https://doi.org/10.1099/jmm.0.030387-0

    Article  CAS  PubMed  Google Scholar 

  17. Mishra D, Satpathy G, Wig N, Fazal F, Ahmed NH, Panda SK (2020) Evaluation of 16S rRNA broad range PCR assay for microbial detection in serum specimens in sepsis patients. J Infect Public Health 13:998–1002. https://doi.org/10.1016/j.jiph.2020.01.007

    Article  PubMed  Google Scholar 

  18. Wayne P (2018) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 10th ed. CLSI document M07-A10.

  19. Ghorbani H, Memar MY, Sefidan FY, Yekani M, Ghotaslou R (2017) In vitro synergy of antibiotic combinations against planktonic and biofilm Pseudomonas aeruginosa. GMS Hyg Infect Control. https://doi.org/10.3205/dgkh000302

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ghadaksaz A, Fooladi AAI, Hosseini HM, Amin M (2015) The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J Appl Biomed 13:61–68. https://doi.org/10.1016/j.jab.2014.05.002

    Article  Google Scholar 

  21. Wayne P (2014) CLSI performance standard of antimicrobial susceptibility testing: twenty-fourth international supplement. CLSI Document M100-S24, Clinical and Laboratory Standard Institute

  22. Achilli C, Grandi S, Ciana A, Guidetti GF, Malara A, Abbonante V, Cansolino L, Tomasi C, Balduini A, Fagnoni M (2014) Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application. Nanomedicine 10:589–597. https://doi.org/10.1016/j.nano.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  23. Rahimi M, Safa KD, Salehi R (2017) Co-delivery of doxorubicin and methotrexate by dendritic chitosan-g-mPEG as a magnetic nanocarrier for multi-drug delivery in combination chemotherapy. Polym Chem 8:7333–7350. https://doi.org/10.1039/C7PY01701D

    Article  CAS  Google Scholar 

  24. Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TAT, Zakaria ZAB (2013) In vitro delivery and controlled release of doxorubicin for targeting osteosarcoma bone cancer. Molecules 18:10580–10598. https://doi.org/10.3390/molecules180910580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Teng N, Nakamura S, Takagi Y, Yamashita Y, Ohgaki M, Yamashita K (2001) A new approach to enhancement of bone formation by electrically polarized hydroxyapatite. J Dent Res 80:1925–1929. https://doi.org/10.1177/00220345010800101201

    Article  CAS  PubMed  Google Scholar 

  26. Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res 12:265–273. https://doi.org/10.4314/tjpr.v12i2.20

    Article  CAS  Google Scholar 

  27. Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Mikrochim Acta 173:51–57. https://doi.org/10.1007/s00604-010-0523-x

    Article  CAS  Google Scholar 

  28. Babou-Kammoe R, Hamoudi S, Larachi F, Belkacemi K (2012) Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions. Can J Chem Eng 90:26–33. https://doi.org/10.1002/cjce.20673

    Article  CAS  Google Scholar 

  29. Kirboga S, Oner M (2013) Effect of the experimental parameters on calcium carbonate precipitation. Chem Eng Trans 32:2119–2124. https://doi.org/10.3303/CET1332354

    Article  Google Scholar 

  30. Pan X, Chen S, Li D, Rao W, Zheng Y, Yang Z, Li L, Guan X, Chen Z (2018) The synergistic antibacterial mechanism of gentamicin-loaded CaCO3 nanoparticles. Front Chem. https://doi.org/10.3389/fchem.2017.00130.10.3389/fchem.2017.00130

    Article  PubMed  Google Scholar 

  31. Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol B 120:66–73. https://doi.org/10.1016/j.jphotobiol.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  32. Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8:2180–2187. https://doi.org/10.1016/10.1021/nl0805615

    Article  CAS  PubMed  Google Scholar 

  33. Lin S, Du F, Wang Y, Ji S, Liang D, Yu L, Li Z (2008) An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Biomacromol 9:109–115. https://doi.org/10.1021/bm7008747

    Article  CAS  Google Scholar 

  34. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. https://doi.org/10.1039/C1CS15188F

    Article  CAS  PubMed  Google Scholar 

  35. Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA (2011) Physicochemical characterization and In V itro hemolysis evaluation of silver nanoparticles. Toxicol Sci 123:133–143. https://doi.org/10.1093/toxsci/kfr149

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Cai L, Li D, Lao Y-H, Liu D, Li M, Ding J, Chen X (2018) Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Res 11:4806–4822. https://doi.org/10.1007/s12274-018-2066-0

    Article  CAS  Google Scholar 

  37. Han Y, Wang X, Dai H, Li S (2012) Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. ACS Appl Mater Interfaces 4:4616–4622. https://doi.org/10.1021/am300992x

    Article  CAS  PubMed  Google Scholar 

  38. Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5:5390–5399. https://doi.org/10.1021/nn200365a

    Article  CAS  PubMed  Google Scholar 

  39. Wibroe PP, Anselmo AC, Nilsson PH, Sarode A, Gupta V, Urbanics R, Szebeni J, Hunter AC, Mitragotri S, Mollnes TE (2017) Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat Nanotechnol 12:589–594. https://doi.org/10.1038/nnano.2017.47

    Article  CAS  PubMed  Google Scholar 

  40. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478. https://doi.org/10.1038/nnano.2007.223

    Article  CAS  PubMed  Google Scholar 

  41. Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PloS ONE 5(6):10949. https://doi.org/10.1371/journal.pone.0010949

    Article  CAS  Google Scholar 

  42. Chen F, Wang G, Griffin JI, Brenneman B, Banda NK, Holers VM, Backos DS, Wu L, Moghimi SM, Simberg D (2017) Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotechnol 12:387–393. https://doi.org/10.1038/nnano.2016.269

    Article  CAS  PubMed  Google Scholar 

  43. Deng ZJ, Liang M, Toth I, Monteiro M, Minchin RF (2012) Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 7:314–322. https://doi.org/10.3109/17435390.2012.655342

    Article  CAS  PubMed  Google Scholar 

  44. Gessner A, Lieske A, Paulke BR, Müller RH (2003) Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res A 65:319–326. https://doi.org/10.1002/jbm.a.10371

    Article  CAS  PubMed  Google Scholar 

  45. Trofimov AD, Ivanova AA, Zyuzin MV, Timin AS (2018) Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: fresh outlook and future perspectives. Pharmaceutics 10:167. https://doi.org/10.3390/pharmaceutics10040167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang Y, Ma P, Wang Y, Du J, Zhou Q, Zhu Z, Yang X, Yuan J (2012) Biocompatibility of porous spherical calcium carbonate microparticles on hela cells. World J Nano Sci Eng 2:25–31. https://doi.org/10.4236/wjnse.2012.21005

    Article  Google Scholar 

  47. Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology 11:26. https://doi.org/10.1186/1477-3155-11-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Elite Researcher Grant Committee under award number (No. 982973) from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran.

Funding

This study was supported by Elite Researcher Grant Committee under award number (No. 982973) from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Adibkia.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical Approval

This study was approved by the Ethics Committee of Tabriz University of Medical Sciences (IR.NIMAD.REC.1398.077).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memar, M.Y., Ahangarzadeh Rezaee, M., Barzegar-Jalali, M. et al. The Antibacterial Effect of Ciprofloxacin Loaded Calcium Carbonate (CaCO3) Nanoparticles Against the Common Bacterial Agents of Osteomyelitis. Curr Microbiol 80, 173 (2023). https://doi.org/10.1007/s00284-023-03234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03234-y

Navigation