Skip to main content
Log in

Unraveling the Virulence Factors and Secreted Proteins of an Environmental Isolate Enterobacter sp. S-16

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Members of the Enterobacter genus include many pathogenic microbes of humans and plants, secrete proteins that contribute to the interactions of bacteria and their environment. Therefore, understanding of secreted proteins is vital to understand bacterial physiology and behavior. Here, we explored the secretome of an environmental isolate Enterobacter sp. S-16 by nanoLC-MS/MS and identified 572 proteins in the culture supernatant. Gene ontology (GO) analysis indicated that proteins were related to biological processes, molecular as well as cellular functions. The majority of the identified proteins are involved in microbial metabolism, chemotaxis & motility, flagellar hook-associated proteins, biosynthesis of antibiotics, and molecular chaperones to assist the protein folding. Bioinformatics analysis of the secretome revealed the presence of type I and type VI secretion system proteins. Presence of these diverse secretion system proteins in Enterobacter sp. S-16 are likely to be involved in the transport of various proteins including nutrient acquisition, adhesion, colonization, and homeostasis maintenance. Among the secreted bacterial proteins with industrial importance, lignocellulolytic enzymes play a major role, therefore, we analyzed our secretome results for any presence of glycoside hydrolases (GHs) and other hydrolytic enzymes (CAZymes). Overall, the secreted proteins may be considered an attractive reservoir of potential antigens for drug development, diagnostic markers, and other biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code Availability

Not applicable.

References

  1. Ferry A, Plaisant F, Ginevra C et al (2020) Enterobacter cloacae colonization and infection in a neonatal intensive care unit: retrospective investigation of preventive measures implemented after a multiclonal outbreak. BMC Infect Dis 20:682. https://doi.org/10.1186/s12879-020-05406-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davin-Regli A, Lavigne JP, Pagès JM (2019) Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev 32:e00002-19. https://doi.org/10.1128/CMR.00002-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079–1081. https://doi.org/10.1086/533452

    Article  PubMed  Google Scholar 

  4. Mezzatesta ML, Gona F, Stefani S (2012) Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol 7(7):887–902. https://doi.org/10.2217/fmb.12.61

    Article  CAS  PubMed  Google Scholar 

  5. Maffei B, Francetic O, Subtil A (2017) Tracking proteins secreted by bacteria: what’s in the toolbox? Front Cell Infect Microbiol 31(7):221. https://doi.org/10.3389/fcimb.2017.00221

    Article  CAS  Google Scholar 

  6. Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J (2016) Exploring the secretomes of microbes and microbial communities using filamentous phage display. Front Microbiol 7:927. https://doi.org/10.3389/fmicb.2016.00429

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liang X, Pei T-T, Li H, Zheng H-Y, Luo H, Cui Y et al (2021) VgrG-dependent effectors and chaperones modulate the assembly of the type VI secretion system. PLoS Pathog 17(12):e1010116. https://doi.org/10.1371/journal.ppat.1010116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costa T, Felisberto-Rodrigues C, Meir A, Prevost Marie S, Redzej A, Trokter M, Waksman G (2015) Secretion systems in gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13(6):343–359. https://doi.org/10.1038/nrmicro3456

    Article  CAS  PubMed  Google Scholar 

  9. Schwarz S, Hood RD, Mougous JD (2010) What is type VI secretion doing in all those bugs? Trends Microbiol 18:531–537. https://doi.org/10.1016/j.tim.2010.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwarz S, West TE, Boyer F, Chiang W-C, Carl MA et al (2010) Burkholderia Type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6(8):e1001068. https://doi.org/10.1371/journal.ppat.1001068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62. https://doi.org/10.1038/nrmicro3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  PubMed  Google Scholar 

  13. López-Mondéjar R, Zühlke D, Větrovský T, Becher D, Ríedel K, Baldrian P (2016) Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 9:104. https://doi.org/10.1186/s13068-016-0518-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Herrera LM, Braña V, Laura Franco Fraguas LF, Castro-Sowinsk S (2019) Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42. Microbiol Res. https://doi.org/10.1016/j.micres.2019.03.009

    Article  PubMed  Google Scholar 

  15. Piccinni FE, Ontañon OM, Ghio S, Sauka DH, Talia PM, Rivarola ML, Valacco MP, Campos E (2018) Secretome profile of Cellulomonas sp. B6 growing on lignocellulosic substrates. J Appl Microbiol 126(3):811–825. https://doi.org/10.1111/jam.14176

    Article  CAS  Google Scholar 

  16. Islam MS, Haque MS, Islam MM, Emdad EM, Halim A, Hossen QM, Hossain Z, Ahmad B, Rahim S, Rahman S, Alam M, Hou S, Wan X, Saito JA, Alam M (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genom 13:493. https://doi.org/10.1186/1471-2164-13-493

    Article  CAS  Google Scholar 

  17. Zubair M, Khan F, Menghwar H, Faisal M, Ashraf M, Rasheed M et al (2020) Progresses on bacterial secretomes enlighten research on Mycoplasma secretome. Microb Pathog 144:104–160. https://doi.org/10.1016/j.micpath.2020.104160

    Article  CAS  Google Scholar 

  18. Bumann D, Aksu S, Wendland M, Janek K, Zimny-Arndt U, Sabarth N, Meyer TF, Jungblut PR (2002) Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun 70:3396–3403. https://doi.org/10.1128/IAI.70.7.3396-3403.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trost SG, Mciver KL, Pate RR (2005) Conducting accelerometer-based activity assessments in field-based research. Med Sci Sport Exer 37:S531–S543. https://doi.org/10.1249/01.mss.0000185657.86065.98

    Article  Google Scholar 

  20. Malen H, Berven FS, Fladmark KE, Wiker HG (2007) Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 7:1702–1718. https://doi.org/10.1002/pmic.200600853

    Article  CAS  PubMed  Google Scholar 

  21. Zhao X, Palma Medina LM, Stobernack T, Glasner C, de Jong A, Utari P, Setroikromo R, Quax WJ, Otto A, Becher D, Buist G, van Dijl JM (2019) Exoproteome heterogeneity among closely related Staphylococcus aureus t437 isolates and possible implications for virulence. J Proteome Res 18:2859–2874. https://doi.org/10.1021/acs.jproteome.9b00179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Indrelid SS, Mathiesen G, Jacobsen G, Lea T, Kleiveland CR (2014) Computational and experimental analysis of the secretome of Methylococcus capsulatus (Bath). PLoS One 9:e114476. https://doi.org/10.1371/journal.pone.0114476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saitz W, Montero DA, Pardo M, Araya D, De la Fuente M, Hermoso MA, Farfán MJ, Ginard D, Rosselló-Móra R, Rasko DA, Del Canto F, Vidal RM (2022) Int J Mol Sci 23(16):9005. https://doi.org/10.3390/ijms23169005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Méndez-Olvera ET, Bustos-Martínez JA, López-Vidal Y, Verdugo-Rodríguez A, Martínez-Gómez D (2016) Jundishapur J Microbiol 9(10):e35591. https://doi.org/10.5812/jjm.35591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chemonges S, Gupta R, Mills PC et al (2016) Characterization of the circulating acellular proteome of healthy sheep using LC-MS/MS-based proteomics analysis of serum. Proteome Sci 15:11. https://doi.org/10.1186/s12953-017-0119-z

    Article  CAS  PubMed  Google Scholar 

  27. Nilsson J (2016) Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides. Glycoconj J 33:261–272. https://doi.org/10.1007/s10719-016-9649-3

    Article  CAS  PubMed  Google Scholar 

  28. Gengenbacher M, Mouritsen J, Schubert OT, Aebersold R, Kaufmann SH (2014) Mycobacterium tuberculosis in the proteomics era. Mol Gene Myco. https://doi.org/10.1128/microbiolspec

    Article  Google Scholar 

  29. Liaci AM, Förster F (2021) Take me home, protein roads: structural insights into signal peptide interactions during ER translocation. Int J Mol Sci 22:11871. https://doi.org/10.3390/ijms222111871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Czech L, Mais CN, Kratzat H et al (2022) Inhibition of SRP-dependent protein secretion by the bacterial alarmone (p)ppGpp. Nat Commun 13:1069. https://doi.org/10.1038/s41467-022-28675-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerlach RG, Hensel M (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297:401–415. https://doi.org/10.1016/j.ijmm.2007.03.017

    Article  CAS  PubMed  Google Scholar 

  32. Zoued A, Brunet YR, Durand E, Aschtgen MS, Logger L, Douzi B, Journet L, Cambillau C, Cascales E (2014) Architecture and assembly of the type VI secretion system. Biochim Biophys Acta 1843:1664–1673. https://doi.org/10.1016/j.bbamcr.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  33. Lin J, Huang S, Zhang Q (2002) Outer membrane proteins: key players for bacterial adaptation in host niches. Microb Infect 4:325–331. https://doi.org/10.1016/s1286-4579(02)01545-9

    Article  CAS  Google Scholar 

  34. Mecsas J, Welch R, Erickson JW, Gross CA (1995) Identification and characterization of an outer membrane protein, OmpX, in Escherichia coli that is homologous to a family of outer membrane proteins including Ail of Yersinia enterocolitica. J Bacteriol 177:799–804. https://doi.org/10.1128/jb.177.3.799-804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rooke JL, Icke C, Wells TJ, Rossiter AE, Browning DF, Morris FC, Leo JC, Schütz MS, Autenrieth IB, Cunningham AF, Linke D, Henderson IR (2021) BamA and BamD are essential for the secretion of trimeric autotransporter adhesins. Front Microbiol 12:628879. https://doi.org/10.3389/fmicb.2021.628879

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580. https://doi.org/10.1038/381571a0

    Article  CAS  PubMed  Google Scholar 

  37. Corigliano MG, Sander VA, Sánchez López EF, Ramos Duarte VA, Mendoza Morales LF, Angel SO, Clemente M (2021) Heat shock proteins 90 kDa: Immunomodulators and adjuvants in vaccine design against infectious diseases. Front Bioeng Biotechnol 8:622186. https://doi.org/10.3389/fbioe.2020.622186

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kumari K, Sharma PK, Aggarwal Y, Singh RP (2022) Secretome analysis of an environmental isolate Enterobacter sp. S-33 identifies proteins related to pathogenicity. Arch Microbiol 204(11):662. https://doi.org/10.1007/s00203-022-03277-y

    Article  CAS  PubMed  Google Scholar 

  39. Schramm FD, Kristen Schroeder K, Jonas K (2020) Protein aggregation in bacteria. FEMS Microbiol Rev 44(1):154–172. https://doi.org/10.1093/femsre/fuz026

    Article  CAS  Google Scholar 

  40. Haiko J, Westerlund-Wikström B (2013) The role of the bacterial flagellum in adhesion and virulence. MDPI Biol 2:1242–1267. https://doi.org/10.3390/biology2041242

    Article  CAS  Google Scholar 

  41. Ebner P, Luqman A, Reichert S, Hauf K, Popella P, Forchhammer K, Otto M, Götz F (2017) Non-classical protein excretion is boosted by PSM alpha-induced cell leakage. Cell Rep 20:1278–1286. https://doi.org/10.1016/j.celrep.2017.07.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Götz F, Yu W, Dube L, Prax M, Ebner P (2015) Excretion of cytosolic proteins (ECP) in bacteria. Int J Med Microbiol 305(2):230–237. https://doi.org/10.1016/j.ijmm.2014.12.021

    Article  CAS  PubMed  Google Scholar 

  43. Ebner P, Prax M, Nega M, Koch I, Dube L, Yu W, Rinker J, Popella P, Flotenmeyer M, Götz F (2015) Excretion of cytoplasmic proteins (ECP) in Staphylococcus aureus. Mol Microbiol 97:775–789. https://doi.org/10.1111/mmi.13065

    Article  CAS  PubMed  Google Scholar 

  44. Ebner P, Rinker J, Götz F (2016) Excretion of cytoplasmic proteins in Staphylococcus is most likely not due to cell lysis. Curr Genet 62:19–23. https://doi.org/10.1007/s00294-015-0504-z

    Article  CAS  PubMed  Google Scholar 

  45. Dragone G, Kerssemakers AAJ, Driessen JLSP, Yamakawa CK, Brumano LP, Mussatto SI (2020) Innovation and strategic orientations for the development of advanced biorefineries. Bioresour Technol 302:122847. https://doi.org/10.1016/j.biortech.2020.122847

    Article  CAS  PubMed  Google Scholar 

  46. Ren Z, You W, Wu S, Poetsch A, Xu C (2019) Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotech Biofuels 12:1–14. https://doi.org/10.1186/s13068-019-1522-8

    Article  CAS  Google Scholar 

  47. Wakarchuk WW, Brochu D, Foote S, Robotham A, Saxena H, Erak T, Kelly J (2016) Proteomic analysis of the secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482. PLoS One 11:e0151186. https://doi.org/10.1371/journal.pone.0151186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Onyango SO, Juma J, De Paepe K, Van de Wiele T (2021) Oral and gut microbial carbohydrate-active enzymes landscape in health and disease. Front Microbiol 12:653448. https://doi.org/10.3389/fmicb.2021.653448

    Article  PubMed  PubMed Central  Google Scholar 

  49. Aakko J, Pietilä S, Toivonen R, Rokka A, Mokkala K, Laitinen K et al (2020) A carbohydrate-active enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota. Sci Rep 10:12411. https://doi.org/10.1038/s41598-020-69241-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from Department of Biotechnology, Government of India.

Funding

The study was funded by Ramalingswami Re-entry Fellowship, Department of Biotechnology, Government of India (Grant Number BT/RLF 2020-21).

Author information

Authors and Affiliations

Authors

Contributions

KK and PKS analyzed the secretome data. RPS supervised the work and wrote the original draft.

Corresponding author

Correspondence to Rajnish Prakash Singh.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animal performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2023_3197_MOESM1_ESM.docx

Supplementary file1 (DOCX 191 kb)—Neighbor-joining phylogenetic tree based on 16S rRNA sequence. Tree shows phylogenetic relationship between Enterobacter sp. S-16 and other type strains of Enterobacter. Supplementary Fig. 1 Neighbor-joining phylogenetic tree based on 16S rRNA sequence. Tree shows phylogenetic relationship between Enterobacter sp. S-16 and other type strains of Enterobacter. The tree was constructed by using MEGA 7. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test with 1000 replicates

284_2023_3197_MOESM2_ESM.xlsx

Supplementary file2 (XLSX 202 kb)—List of identified secretome proteins (572) have been provided in Supplementary File 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, K., Sharma, P.K. & Singh, R.P. Unraveling the Virulence Factors and Secreted Proteins of an Environmental Isolate Enterobacter sp. S-16. Curr Microbiol 80, 88 (2023). https://doi.org/10.1007/s00284-023-03197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03197-0

Navigation