Skip to main content
Log in

Chromate Removal by Enterobacter cloacae Strain UT25 from Tannery Effluent and Its Potential Role in Cr (VI) Remediation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An indigenous chromate-resistant bacterial strain isolated from tannery effluent was identified based on morphological, biochemical, and 16S rRNA gene sequencing, as Enterobacter cloacae UT25. It was found to resist heavy metal ions such as Cr (VI), Pb (II), Cu (II), Co (II), Ni (II), Hg (II), and Zn (II) and antibiotics. The strain was able to remove 89 and 86% chromate, after 24 h of incubation in a Luria–Bertani (LB) medium at an initial Cr (VI) concentration of 1000 and 1500 µg/ml, respectively. Minimum inhibitory concentration (MIC) was observed for chromate to be 80,000 and 1850 µg/ml, after 48 h of incubation in LB and acetate minimal media (AMM), respectively. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis showed discrete cells with intact and smooth cell walls and homogenous cytoplasm in the absence of metal stress, whereas chromate stress caused cell lysis and reduction in size, which was a characteristic response to Cr (VI) toxicity. Energy Dispersive X-Ray Spectroscopy (EDX) confirmed the adsorption of oxyanions to the cell wall which was one of the Cr (VI) removal mechanisms by the bacterium. Atomic Force Microscopy (AFM) micrographs of chromate-untreated and treated cells revealed Root Mean Square roughness (Rq) values of 16.25 and 11.26 nm, respectively, indicating less roughness in the presence of stress. The partial gene sequence of class 1 integrons (intI1) of strain UT25 showed 94% homology with intI1 gene of strain Enterobacter hormaechei strain ECC59 plasmid pECC59-1. The present analysis highlighted the potential of E. cloacae UT25 as a promissory bacterium that could be applied in removing chromate from polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated during this study are included in this article.

Code Availability

Not applicable.

References

  1. Raman NM, Asokan S, Sundari NS, Ramasamy S (2018) Bioremediation of chromium (VI) by Stenotrophomonas maltophilia isolated from tannery effluent. Inter J Environ Sci Technol 15(1):207–216. https://doi.org/10.1007/s13762-017-1378-z

    Article  CAS  Google Scholar 

  2. Das S, Behera BC, Sudarshan M, Chakraborty A, Thatoi H (2022) Bioreduction potential of chromate resistant bacteria isolated from chromite mine water of Sukinda Odisha. Bioremediat J. https://doi.org/10.1080/10889868.2029824

    Article  Google Scholar 

  3. Sturm G, Brunner S, Suvorova E, Dempwolff F, Reiner J, Graumann P, Bernier-Latmani R, Majzlan J, Gescher J (2018) Chromate resistance mechanisms in Leucobacter chromiiresistens. Appl Environ Microbiol 84(23):e02208-e2218. https://doi.org/10.1128/AEM.02208-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo S, Xiao C, Zheng Y, Li Y, Chi R (2021) Removal and potential mechanisms of Cr (VI) contamination in phosphate mining wasteland by isolated Bacillus megatherium PMW-03. J Clean Prod 322:129062. https://doi.org/10.1016/j.jclepro.2021.129062

    Article  CAS  Google Scholar 

  5. Hossan S, Hossain S, Islam MR, Kabir MH, Ali S, Islam MS, Imran KM, Moniruzzaman M, Mou TJ, Parvez AK, Mahmud ZH (2020) Bioremediation of hexavalent chromium by chromium resistant bacteria reduces phytotoxicity. Inter J Environ Res Public Health 17(17):6013. https://doi.org/10.3390/ijerph17176013

    Article  CAS  Google Scholar 

  6. Banerjee S, Misra A, Chaudhury S, Dam B (2019) A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. J Hazard Mater 367:215–223. https://doi.org/10.1016/j.jhazmat.2018.12.038

    Article  CAS  PubMed  Google Scholar 

  7. He Z, Hu Y, Yin Z, Hu Y, Zhong H (2016) Microbial diversity of chromium-contaminated soils and characterization of six chromium-removing bacteria. Environ Manag 57(6):1319–1328. https://doi.org/10.1007/s00267-016-0675-5

    Article  Google Scholar 

  8. Kalsoom A, Batool R, Jamil N (2021) Highly Cr (VI)-tolerant Staphylococcus simulans assisting chromate evacuation from tannery effluent. Green Process Synth 10(1):295–308. https://doi.org/10.1515/gps-2021-0027

    Article  CAS  Google Scholar 

  9. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akinbowale OL, Peng H, Grant P, Barton MD (2007) Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. Inter J Antimicrob Agents 30(2):177–182. https://doi.org/10.1016/j.ijantimicag.2007.03.012

    Article  CAS  Google Scholar 

  11. Kalsoom A, Batool R, Jamil N (2020) An integrated approach for safe removal of chromium (VI) by Brevibacterium sp. Pak J Sci 72(1):1–18

    Google Scholar 

  12. Suresh G, Balasubramanian B, Ravichandran N, Ramesh B, Kamyab H, Velmurugan P, Siva GV, Ravi AV (2021) Bioremediation of hexavalent chromium-contaminated wastewater by Bacillus thuringiensis and Staphylococcus capitis isolated from tannery sediment. Biomass Convers Biorefin 11(2):383–391. https://doi.org/10.1007/s13399-020-01259-y

    Article  CAS  Google Scholar 

  13. Sen Y, Mutlu M (2013) Sterilization of food contacting surfaces via non-thermal plasma treatment: a model study with Escherichia coli-contaminated stainless steel and polyethylene surfaces. Food Bioprocess Technol 6(12):3295–3304. https://doi.org/10.1007/s11947-012-1007-2

    Article  CAS  Google Scholar 

  14. Tyagi B, Gupta B, Thakur IS (2020) Biosorption of Cr (VI) from aqueous solution by extracellular polymeric substances (EPS) produced by Parapedobacter sp. ISTM3 strain isolated from Mawsmai cave, Meghalaya India. Environ Res 191:110064. https://doi.org/10.1016/j.envres.2020.110064

    Article  CAS  PubMed  Google Scholar 

  15. Ma Y, Zhong H, He Z (2019) Cr (VI) reductase activity locates in the cytoplasm of Aeribacillus pallidus BK1, a novel Cr (VI)-reducing thermophile isolated from Tengchong geothermal region, China. Chem Eng J 371:524–534. https://doi.org/10.1016/j.cej.2019.04.085

    Article  CAS  Google Scholar 

  16. Ashayeri-Panah M, Feizabadi MM, Eftekhar F (2014) Correlation of multi-drug resistance, integron and blaESBL gene carriage with genetic fingerprints of extended-spectrum β-lactamase producing Klebsiella pneumoniae. Jundishapur J Microbiol 7(2):e8747. https://doi.org/10.5812/jjm.8747

    Article  PubMed  PubMed Central  Google Scholar 

  17. Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, Mishra RK, Chauhan DK, Tripathi DK, Sharma S (2017) Tolerance and reduction of chromium (VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front Plant Sci 8:778. https://doi.org/10.3389/fpls.2017.00778

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ramírez V, Baez A, López P, Bustillos R, Villalobos MA, Carreño R, Contreras JL, Muñoz-Rojas J, Fuentes LE, Martínez J, Munive JA (2019) Chromium hyper-tolerant Bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (Prosopis laevigata). Front Microbiol 10:1833. https://doi.org/10.3389/fmicb.2019.01833

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alam MZ, Ahmad S, Malik A (2011) Prevalence of heavy metal resistance in bacteria isolated from tannery effluents and affected soil. Environ Monit Assess 178(1):281–291. https://doi.org/10.1007/s10661-010-1689-8

    Article  CAS  PubMed  Google Scholar 

  20. Koc S, Kabatas B, Icgen B (2013) Multidrug and heavy metal-resistant Raoultella planticola isolated from surface water. Bull Environ Contam Toxicol 91(2):177–183. https://doi.org/10.1007/s00128-013-1031-6

    Article  CAS  PubMed  Google Scholar 

  21. Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, Saha AK, Ghosh S, Olsson B, Mandal A (2015) Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. J Environ Sci Health Part A 50(11):1136–1147. https://doi.org/10.1080/10934529.2015.1047670

    Article  CAS  Google Scholar 

  22. Pattnaik S, Mohapatra S, Pati S, Dash D, Devadarshini D, Tanaya K, Mishra BB, Samantaray D (2022) Microbial bioremediation of Cr (VI)-contaminated soil for sustainable agriculture. Microbial Biodegradation and Bioremediation. Elsevier, Amsterdam, pp 395–407

    Google Scholar 

  23. Shi K, Dai X, Fan X, Zhang Y, Chen Z, Wang G (2020) Simultaneous removal of chromate and arsenite by the immobilized Enterobacter bacterium in combination with chemical reagents. Chemosphere 259:127428. https://doi.org/10.1016/j.chemosphere.2020.127428

    Article  CAS  PubMed  Google Scholar 

  24. Gupta P, Kumar V, Usmani Z, Rani R, Chandra A, Gupta VK (2020) Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere 240:124944. https://doi.org/10.1016/j.chemosphere.2019.124944

    Article  CAS  PubMed  Google Scholar 

  25. Subrahmanyam G, Sharma RK, Kumar GN, Archana G (2018) Vigna radiata var. GM4 plant growth enhancement and root colonization by a multi-metal-resistant plant growth-promoting bacterium Enterobacter sp. C1D in Cr (VI)-amended soils. Pedosphere 28(1):144–156. https://doi.org/10.1016/S1002-0160(17)60448-X

    Article  CAS  Google Scholar 

  26. Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399. https://doi.org/10.1016/j.jenvman.2014.07.014

    Article  CAS  Google Scholar 

  27. Chandra R, Bharagava RN, Kapley A, Purohit HJ (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresour Technol 102(3):2333–2341. https://doi.org/10.1016/j.biortech.2010.10.087

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Yang Z, Peng B, Chai L, Wu B, Wu R (2013) Biotreatment of chromite ore processing residue by Pannonibacter phragmitetus BB. Environ Science Pollut Res 20(8):5593–5602. https://doi.org/10.1007/s11356-013-1526-z

    Article  CAS  Google Scholar 

  29. Pavithra KG, Kumar PS, Christopher FC, Saravanan A (2017) Removal of toxic Cr (VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor. J Phys Chem Solids 110:379–385. https://doi.org/10.1016/j.jpcs.2017.07.002

    Article  CAS  Google Scholar 

  30. Li L, Shang X, Sun X, Xiao X, Xue J, Gao Y, Gao H (2021) Bioremediation potential of hexavalent chromium by a novel bacterium Stenotrophomonas acidaminiphila 4–1. Environ Technol Innov 22:101409. https://doi.org/10.1016/j.eti.2021.101409

    Article  CAS  Google Scholar 

  31. Bai Y-N, Lu Y-Z, Shen N, Lau T-C, Zeng RJ (2018) Investigation of Cr (VI) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition. J Hazard Mater 344:585–592. https://doi.org/10.1016/j.jhazmat.2017.10.059

    Article  CAS  PubMed  Google Scholar 

  32. Rewak-Soroczynska J, Dorotkiewicz-Jach A, Drulis-Kawa Z, Wiglusz R (2022) Culture media composition influences the antibacterial effect of silver, cupric, and zinc ions against Pseudomonas aeruginosa. Biomolecules 12(7):963–978. https://doi.org/10.3390/biom12070963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oladipo OG, Awotoye OO, Olayinka A, Ezeokoli OT, Maboeta MS, Bezuidenhout CC (2016) Heavy metal tolerance potential of Aspergillus strains isolated from mining sites. Bioremediat J 20(4):287–297. https://doi.org/10.1080/10889868.2016.1250722

    Article  CAS  Google Scholar 

  34. Biswas J, Bose P, Mandal S, Paul AK (2018) Reduction of hexavalent chromium by a moderately halophilic bacterium, Halomonas smyrnensis KS802 under saline environment. Environ Sustain 1(4):411–423. https://doi.org/10.1007/s42398-018-00037-x

    Article  Google Scholar 

  35. Rizvi A, Ahmed B, Zaidi A, Khan M (2019) Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. Ecotoxicol 28(3):302–322. https://doi.org/10.1007/s10646-019-02023-3

    Article  CAS  Google Scholar 

  36. Zeng W, Li F, Wu C, Yu R, Wu X, Shen L, Liu Y, Qiu G, Li J (2020) Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess Biosyst Eng 43(1):153–167. https://doi.org/10.1007/s00449-019-02213-7

    Article  CAS  PubMed  Google Scholar 

  37. Karthik C, Barathi S, Pugazhendhi A, Ramkumar VS, Thi NBD, Arulselvi PI (2017) Evaluation of Cr (VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J Hazard Mater 333:42–53. https://doi.org/10.1016/j.jhazmat.2017.03.037

    Article  CAS  PubMed  Google Scholar 

  38. Fernández M, Morales GM, Agostini E, González PS (2017) An approach to study ultrastructural changes and adaptive strategies displayed by Acinetobacter guillouiae SFC 500–1A under simultaneous Cr (VI) and phenol treatment. Environ Sci Pollut Res 24(25):20390–20400. https://doi.org/10.1007/s11356-017-9682-1

    Article  CAS  Google Scholar 

  39. Batool R, Yrjälä K, Shaukat K, Jamil N, Hasnain S (2015) Production of EPS under Cr (VI) challenge in two indigenous bacteria isolated from a tannery effluent. J Basic Microbiol 55(9):1064–1074. https://doi.org/10.1002/jobm.201400885

    Article  CAS  PubMed  Google Scholar 

  40. Wu S, Altenried S, Zogg A, Zuber F, Maniura-Weber K, Ren Q (2018) Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and microcolony formation. ACS Omega 3(6):6456–6464. https://doi.org/10.1021/acsomega.8b00769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sabbagh P, Rajabnia M, Maali A, Ferdosi-Shahandashti E (2021) Integron and its role in antimicrobial resistance: a literature review on some bacterial pathogens. Iran J Basic Med Sci 24(2):136–142. https://doi.org/10.22038/ijbms.2020.48905.11208

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR (2018) Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front Microbiol 9:2066. https://doi.org/10.3389/fmicb.2018.02066

    Article  PubMed  PubMed Central  Google Scholar 

  43. Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, Chen D, Bian H, Li Y, Yu G (2015) Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Anti 14(1):1–11. https://doi.org/10.1186/s12941-015-0100-6

    Article  CAS  Google Scholar 

  44. Gang H, Xiao C, Xiao Y, Yan W, Bai R, Ding R, Yang Z, Zhao F (2019) Proteomic analysis of the reduction and resistance mechanisms of Shewanella oneidensis MR-1 under long-term hexavalent chromium stress. Environ Inter 127:94–102. https://doi.org/10.1016/j.envint.2019.03.016

    Article  CAS  Google Scholar 

  45. Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth promoting bacteria. J Genet Eng Biotechnol 13(1):51–58. https://doi.org/10.1016/j.jgeb.2015.02.001

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate University of the Punjab for supporting the present study. This research work is part of the Ph.D. Thesis of the first author Ms. Asma Kalsoom.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AK: data curation, formal analysis, investigation, methodology, software, visualization, and writing—original draft; RB & NJ: conceptualization, data curation, formal analysis, methodology, project administration, resources, software, supervision, validation, visualization, and writing—review & editing; SMH and JAK: performed and interpretation of AFM data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rida Batool.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicting interests.

Ethical Approval

This article does not contain any studies with human participants or animals.

Consent for Publication

Not applicable.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalsoom, A., Jamil, N., Hassan, S.M.u. et al. Chromate Removal by Enterobacter cloacae Strain UT25 from Tannery Effluent and Its Potential Role in Cr (VI) Remediation. Curr Microbiol 80, 99 (2023). https://doi.org/10.1007/s00284-023-03194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03194-3

Navigation