Skip to main content
Log in

Proteomics Reveals Damaging Effect of Alpha-Cypermethrin Exposure in a Non-Target Freshwater Microalga Chlorella sp. NC-MKM

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Alpha-cypermethrin, a pyrethroid pesticide, is frequently used on crops to prevent insect attacks. However, occasionally, due to drift, leaching, or with rainwater, it enters the aquatic environment and poses a serious threat to the growth of non-target aquatic organisms. In the current study, we were interested in investigating the damaging effect of alpha-cypermethrin on a local freshwater non-target green alga Chlorella sp. NC-MKM in terms of its protein levels. This was achieved by exposing Chlorella sp. NC-MKM to an EC50 concentration of alpha-cypermethrin for 1 day, followed by the two-dimensional (2-D) gel electrophoresis and MALDI-TOF MS. Fifty-three proteins, which had showed significant differential accumulation (> 1.5 fold, P < 0.05) after exposure to alpha-cypermethrin, were considered as differentially accumulated proteins (DAPs). These DAPs were further divided into several functional categories, and the expressions of each in control and treatment samples were compared. Comparison revealed that alpha-cypermethrin exposure affects the accumulation of proteins related with photosynthesis, stress response, carbohydrate metabolism, signal transduction and transporters, translation, transcription, cell division, lipid metabolism, amino acid and nucleotide biosynthesis, secondary metabolites production, and post-translational modification, and thus rendered the tested algal isolate sensitive toward this pesticide. The overall findings of this research thus offer a fundamental understanding of the possible mechanism of action of the insecticide alpha-cypermethrin on the microalga Chlorella sp. NC-MKM and also suggest potential biomarkers for the investigation of pesticide exposed microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All of the data that are generated or analyzed for this study are included in this manuscript and its supplementary material files.

Code Availability

Not applicable.

References

  1. Bellinger EG, Sigee DC (2010) Freshwater Algae: identification and use as bioindicators. Wiley Ltd, Chichester, pp 99–136

    Book  Google Scholar 

  2. Caporgno MP, Mathys A (2018) Trends in microalgae incorporation into innovative food products with potential health benefits. Front nutr 5:58. https://doi.org/10.3389/fnut.2018.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Safi C, Zebib B, Merah O, Pontalier PY, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278. https://doi.org/10.1016/j.rser.2014.04.007

    Article  Google Scholar 

  4. Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170. https://doi.org/10.1007/978-1-4757-4260-2-3

    Article  CAS  PubMed  Google Scholar 

  5. Gür Ö, Özdal M, Algur ÖF (2014) Biodegradation of the synthetic pyrethroid insecticide α-cypermethrin by Stenotrophomonas maltophilia OG2. Turk J Biol 38(5):684–689. https://doi.org/10.3906/biy-1402-10

    Article  CAS  Google Scholar 

  6. Bradbury SP, Coats JR (1989) Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem 8(5):373–380. https://doi.org/10.1002/etc.5620080503

    Article  CAS  Google Scholar 

  7. Oros DR, Werner I (2005) Pyrethroid insecticides: an analysis of use patterns, distributions, potential toxicity and fate in the Sacramento-San Joaquin Delta and Central Valley. San Francisco Estuary Institute, Oakland, pp 8–101

    Google Scholar 

  8. Gu XZ, Zhang GY, Chen L, Dai RL, Yu YC (2008) Persistence and dissipation of synthetic pyrethroid pesticides in red soils from the Yangtze river delta area. Environ Geochem Health 30:67–77. https://doi.org/10.1007/s10653-007-9108-y

    Article  CAS  PubMed  Google Scholar 

  9. Rafique N, Tariq SR, Ahmed D (2016) Monitoring and distribution patterns of pesticide residues in soil from cotton/wheat fields of Pakistan. Environ Monit Assess 188(12):1–12. https://doi.org/10.1007/s10661-016-5668-6

    Article  CAS  Google Scholar 

  10. Amorós I, Alonso JL, Romaguera S, Carrasco JM (2007) Assessment of toxicity of a glyphosate-based formulation using bacterial systems in lake water. Chemosphere 67:2221–2228. https://doi.org/10.1016/j.chemosphere.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  11. Tang X, Zhu B, Katou H (2012) A review of rapid transport of pesticides from sloping farmland to surface waters: processes and mitigation strategies. J Environ Sci 24:351–361. https://doi.org/10.1016/S1001-0742(11)60753-5

    Article  CAS  Google Scholar 

  12. Chanu N, Mandal MK, Srivastava A, Chaurasia N (2022) Proteomics analysis reveals several metabolic alterations in cyanobacterium Anabaena sp. NC-K1 in response to alpha-cypermethrin exposure. Environ Sci Pollut Res 29(13):19762–19777. https://doi.org/10.1007/s11356-021-16611-6

    Article  CAS  Google Scholar 

  13. Stratton GW, Corke CT (1982) Toxicity of the insecticide permethrin and some degradation products towards algae and cyanobacteria. Environ Pollut 29:71–80. https://doi.org/10.1016/0143-1471(82)90055-1

    Article  CAS  Google Scholar 

  14. Megharaj M, Venkateswarlu K, Rao AS (1987) Influence of cypermethrin and fenvalerate on a green alga and three cyanobacteria isolated from soil. Ecotoxicol Environ Saf 14(2):142–146. https://doi.org/10.1016/0147-6513(87)90056-X

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Ping X, Sheng XM, Wu ZB, Xie LQ (2005) Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicol Environ Saf 60:188–192. https://doi.org/10.1016/j.ecoenv.2004.01.012

    Article  CAS  PubMed  Google Scholar 

  16. Chanu NK, Mandal MK, Chaurasia N (2020) Correlating the influence of biochemical parameters in environment with pesticide tolerance of non-target algae. Biologia 76(1):307–319. https://doi.org/10.2478/s11756-020-00568-x

    Article  CAS  Google Scholar 

  17. Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92(4):696–717. https://doi.org/10.1111/j.1399-3054,1994.tb03042.x

    Article  CAS  Google Scholar 

  18. Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15. https://doi.org/10.1016/j.ecoenv.2008.05.009

    Article  CAS  PubMed  Google Scholar 

  19. Vallotton N, Moser D, Eggen RIL, Junghans M, Chèvre N (2008) S-metolachlor pulse exposure on the algae Scenedesmus vacuolatus: effects during exposure and the subsequent recovery. Chemosphere 73:395–400. https://doi.org/10.1016/j.chemosphere.2008.05.039

    Article  CAS  PubMed  Google Scholar 

  20. Iummato MM, Fassiano A, Graziano M, dos Santos AM, de Molina MDCR, Juárez ÁB (2019) Effect of glyphosate on the growth, morphology, ultrastructure and metabolism of Scenedesmus vacuolatus. Ecotoxicol Environ Saf 172:471–479. https://doi.org/10.1016/j.ecoenv.2019.01.083

    Article  CAS  PubMed  Google Scholar 

  21. Baruah P, Chaurasia N (2020) Ecotoxicological effects of alpha-cypermethrin on freshwater alga Chlorella sp.: growth inhibition and oxidative stress studies. Environ Toxicol Pharmacol 76:103347. https://doi.org/10.1016/j.etap.2020.103347

    Article  CAS  PubMed  Google Scholar 

  22. Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W (2012) Quantitative iTRAQ LC–MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC6803. J Proteome Res 1(11):5286–5300. https://doi.org/10.1021/pr300504w

    Article  CAS  Google Scholar 

  23. Zhang H, Xiao W, Jiang X, Lu L (2014) Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254. PLoS ONE 9(3):1–10. https://doi.org/10.1371/journal.pone.0091162

    Article  Google Scholar 

  24. Gao Y, Lim TK, Lin Q, Li SFY (2016) Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics. J Proteomics 139:67–76. https://doi.org/10.1016/j.jprot.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  25. Bianco M, Ventura G, Calvano CD, Losito I, Cataldi TR (2022) A new paradigm to search for allergenic proteins in novel foods by integrating proteomics analysis and in silico sequence homology prediction: Focus on spirulina and chlorella microalgae. Talanta 240:123188. https://doi.org/10.1016/j.talanta.2021.123188

    Article  CAS  PubMed  Google Scholar 

  26. Chaurasia N, Mishra Y, Chatterjee A, Rai R, Yadav S, Rai LC (2017) Overexpression of phytochelatin synthase (pcs) enhances abiotic stress tolerance by altering the proteome of transformed Anabaena sp. PCC 7120. Protoplasma 254:1715–1724. https://doi.org/10.1007/s00709-016-1059-7

    Article  CAS  PubMed  Google Scholar 

  27. Ismaiel MM, Piercey-Normore MD, Rampitsch C (2018) Proteomic analyses of the cyanobacterium Arthrospira (Spirulina) platensis under iron and salinity stress. Environ Exp Bot 147:63–74. https://doi.org/10.1016/j.envexpbot.2017.11.013

    Article  CAS  Google Scholar 

  28. Raposo de Magalhães C, Schrama D, Farinha AP, Revets D, Kuehn A, Planchon S, Cerqueira M (2020) Protein changes as robust signatures of fish chronic stress: a proteomics approach to fish welfare research. BMC Genom 21(1):1–16. https://doi.org/10.1186/s12864-020-6728-4

    Article  CAS  Google Scholar 

  29. Srivastava A, Biswas S, Yadav S, Kumar S, Srivastava V, Mishra Y (2021) Acute cadmium toxicity and post-stress recovery: insights into coordinated and integrated response/recovery strategies of Anabaena sp. PCC 7120. J Hazard Mater 411:124822

    Article  CAS  PubMed  Google Scholar 

  30. Mandal MK, Saikia P, Chanu N, Chaurasia N (2019) Modulation of lipid content and lipid profile by supplementation of iron, zinc, and molybdenum in indigenous microalgae. Environ Sci Pollut Res 26(20):20815–20828. https://doi.org/10.1007/s11356-019-05065-6

    Article  CAS  Google Scholar 

  31. Mandal MK, Chaurasia N (2018) Molecular characterization of freshwater microalgae and nutritional exploration to enhance their lipid yield. 3 Biotech 8:238–252. https://doi.org/10.1007/s13205-018-1248-5

    Article  PubMed  Google Scholar 

  32. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–6. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  33. Yuan NN, Chen SN, Zhai LX, Schnabel G, Yin LF, Luo CX (2013) Baseline sensitivity of Monilia yunnanensis to the DMI fungicides tebuconazole and triadimefon. Eur J Plant Pathol 136:651–655. https://doi.org/10.1007/s10658-013-0200-0

    Article  CAS  Google Scholar 

  34. Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–2133. https://doi.org/10.1139/b79-163

    Article  CAS  Google Scholar 

  35. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. https://doi.org/10.1016/S0176-1617(11)81192-2

    Article  CAS  Google Scholar 

  36. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):1891–1898. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  Google Scholar 

  37. Constantine NG, Stanley KR (1977) Superoxide dismutases. Plant Physiol 59(309):14

    Google Scholar 

  38. Gahagan HE, Holm RE, Abeles FB (1968) Effect of ethylene on peroxidase activity. Physiol Plant 21(6):1270–1279. https://doi.org/10.1111/j.1399-3054.1968.tb07358.x

    Article  CAS  Google Scholar 

  39. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775. https://doi.org/10.1016/S0076-6879(55)02300-8

    Article  Google Scholar 

  40. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: occurrence in higher plants. Plant Physiol 59:309–314. https://doi.org/10.1104/pp.59.2.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bradford MM (1976) A rapid and sensitive method for the quantitation of micrograms quantities utilizing the principle of protein dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  42. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. https://doi.org/10.1038/nprot.2006.468

    Article  CAS  PubMed  Google Scholar 

  43. Kaeoboon S, Suksungworn R, Sanevas N (2021) Toxicity response of Chlorella microalgae to glyphosate herbicide exposure based on biomass, pigment contents and photosynthetic efficiency. Plant Sci Today 8(2):293–300. https://doi.org/10.14719/pst.2021.8.2.1068

    Article  CAS  Google Scholar 

  44. Savitski MM, Nielsen ML, Zubarev RA (2005) New data base-independent, sequence tag-based scoring of peptide MS/MS data validates Mowse scores, recovers below threshold data, singles out modified peptides, and assesses the quality of MS/MS techniques. Mol Cell Proteomics 4(8):1180–1188. https://doi.org/10.1074/mcp.T500009-MCP200

    Article  CAS  PubMed  Google Scholar 

  45. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  46. Drzeżdżon J, Jacewicz D, Chmurzyński L (2018) The impact of environmental contamination on the generation of reactive oxygen and nitrogen species—consequences for plants and humans. Environ Int 119:133–151. https://doi.org/10.1016/j.envint.2018.06.019

    Article  CAS  PubMed  Google Scholar 

  47. Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43(1):83–11. https://doi.org/10.1146/annurev.pp.43.060192.000503

    Article  CAS  Google Scholar 

  48. Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33(5):541–553. https://doi.org/10.1093/oxfordjournals.pcp.a078288

    Article  CAS  Google Scholar 

  49. Srivastava AK, Bhargava P, Rai LC (2005) Salinity and copper-induced oxidative damage and changes in the antioxidative defence systems of Anabaena doliolum. World J Microbiol Biotechnol 21:1291–1298. https://doi.org/10.1007/s11274-005-2442-2

    Article  CAS  Google Scholar 

  50. Kaur S, Srivastava A, Kumar S, Srivastava V, Ahluwalia AS, Mishra Y (2019) Biochemical and proteomic analysis reveals oxidative stress tolerance strategies of Scenedesmus abundans against allelochemicals released by Microcystis aeruginosa. Algal Res 41:101525. https://doi.org/10.1016/j.algal.2019.101525

    Article  Google Scholar 

  51. Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565. https://doi.org/10.1146/annurev.arplant.57.032905.105350

    Article  CAS  PubMed  Google Scholar 

  52. Schöttler MA, Albus CA, Bock R (2011) Photosystem I: its biogenesis and function in higher plants. J Plant Physiol 168:1452–1461. https://doi.org/10.1016/j.jplph.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  53. Wilde A, Härtel H, Hübschmann T, Hoffmann P, Shestakov SV, Börner T (1995) Inactivation of a Synechocystis sp. strain PCC 6803 gene with homology to conserved chloroplast open reading frame 184 increases the photosystem II-to-photosystem I ratio. Plant Cell 7(5):649–658. https://doi.org/10.1105/tpc.7.5.649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16:6095–6104. https://doi.org/10.1093/emboj/16.20.6095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang H, Liu J, Wen X, Lu C (2015) Molecular mechanism of photosystem I assembly in oxygenic organisms. Biochim Biophys Acta 1847:838–848. https://doi.org/10.1016/j.bbabio.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  56. Ozawa SI, Onishi T, Takahashi Y (2010) Identification and characterization of an assembly intermediate subcomplex of photosystem I in the green alga Chlamydomonas reinhardtii. J Biol Chem 285(26):20072–20079. https://doi.org/10.1074/jbc.M109.098954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Willows RD, Hansson M (2003) Mechanism, structure, and regulation of magnesium chelatase. In: Kadish KM, Smith K, Guilard R (eds) The porphyrin handbook II, vol 13. Academic Press, San Diego, pp 1–47

    Google Scholar 

  58. Leyva JA, Bianchet MA, Amzel LM (2003) Understanding ATP synthesis: structure and mechanism of the F1-ATPase. Mol Membr Biol 20(1):27–33. https://doi.org/10.1080/0968768031000066532

    Article  CAS  PubMed  Google Scholar 

  59. Guo R, Youn SH, Ki JS (2015) Heat shock protein 70 and 90 genes in the harmful dinoflagellate Cochlodinium polykrikoides: Genomic structures and transcriptional responses to environmental stresses. Int J Genom. https://doi.org/10.1155/2015/484626

    Article  Google Scholar 

  60. Mafu S, Ding Y, Murphy KM, Yaacoobi O, Addison JB, Wang Q, Zerbe P (2018) Discovery, biosynthesis and stress-related accumulation of dolabradiene-derived defenses in maize. Plant Physiol 176(4):2677–2690. https://doi.org/10.1104/pp.17.01351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martin W, Scheibe R, Schnarrenberger C (2000) The Calvin cycle and its regulation. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis physiology and metabolism. Kluwer Academic Publishers, Dordrecht, pp 9–51

    Chapter  Google Scholar 

  62. Raines CA (2003) The Calvin cycle revisited. Photosyn Res 75(1):1–10. https://doi.org/10.1023/A:1022421515027

    Article  CAS  Google Scholar 

  63. Hammel A, Sommer F, Zimmer D, Stitt M, Mühlhaus T, Schroda M (2020) Overexpression of sedoheptulose-1, 7-bisphosphatase enhances photosynthesis in Chlamydomonas reinhardtii and has no effect on the abundance of other Calvin–Benson cycle enzymes. Front Plant Sci 11:868. https://doi.org/10.3389/fpls.2020.00868

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry. Macmillan, Stuttgart

    Google Scholar 

  65. Shambaugh GE III (1977) Urea biosynthesis I. The urea cycle and relationships to the citric acid cycle. Am J Clin Nutr 30(12):2083–2087. https://doi.org/10.1093/ajcn/30.12.2083

    Article  CAS  PubMed  Google Scholar 

  66. Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D (1998) FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92:105–116. https://doi.org/10.1016/S0092-8674(00)80903-4

    Article  CAS  PubMed  Google Scholar 

  67. Damiano JS, Oliveira V, Welsh K, Reed JC (2004) Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses. Biochem J 381(1):213–219. https://doi.org/10.1042/BJ20031506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525. https://doi.org/10.1038/nrm2728

    Article  CAS  PubMed  Google Scholar 

  69. Wittinghofer A, Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971. https://doi.org/10.1146/annurev-biochem-062708-134043

    Article  CAS  PubMed  Google Scholar 

  70. Armengod ME, Moukadiri I, Prado S, Ruiz-Partida R, Benitez Paez A, Villarroya M, Lomas R, Garzon MJ, Martinez Zamora A, Meseguer S (2012) Enzymology of tRNA modification in the bacterial MnmEG pathway. Biochimie 94:1510–1520. https://doi.org/10.1016/j.biochi.2012.02.019

    Article  CAS  PubMed  Google Scholar 

  71. Tohge T, Watanabe M, Hoefgen R, Fernie AR (2013) Shikimate and phenylalanine biosynthesis in the green lineage. Front Plant Sci 4:62. https://doi.org/10.3389/fpls.2013.00062

    Article  PubMed  Google Scholar 

  72. Tahara H, Fukai S, Sambe M, Kobayashi M, Uchiyama J, Ohta H (2013) Characterization of the ABC transporter gene slr1045 involved in acid-stress tolerance of Synechocystis sp PCC 6803. In: Congming Lu, Zhang L, Kuang T (eds) Photosynthesis Research for Food, Fuel and the Future, 15th International Conference on Photosynthesis. Springer, Heidelberg, pp 596–598

    Chapter  Google Scholar 

  73. Justice SS, García-Lara J, Rothfield LI (2000) Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery. Mol microbiol 37(2):410–423. https://doi.org/10.1046/j.1365-2958.2000.02007.x

    Article  CAS  PubMed  Google Scholar 

  74. Silber N, Matos de Opitz CL, Mayer C, Sass P (2020) Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 15(9):801–831. https://doi.org/10.2217/fmb-2019-0348

    Article  CAS  PubMed  Google Scholar 

  75. Liang MH, Qv XY, Jin HH, Jiang JG (2016) Characterization and expression of AMP-forming acetyl-CoA synthetase from Dunaliella tertiolecta and its response to nitrogen starvation stress. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep23445

    Article  CAS  Google Scholar 

  76. Mandal MK, Chanu NK, Chaurasia N (2020) Exogenous addition of indole acetic acid and kinetin under nitrogen-limited medium enhances lipid yield and expression of glycerol-3-phosphate acyltransferase & diacylglycerol acyltransferase genes in indigenous microalgae: a potential approach for biodiesel production. Bioresour Technol 297:122439. https://doi.org/10.1016/j.biortech.2019.122439

    Article  CAS  PubMed  Google Scholar 

  77. Mandal MK, Chaurasia N (2021) De novo transcriptomic analysis of Graesiella emersonii NC-M1 reveals differential genes expression in cell proliferation and lipid production under glucose and salt supplemented condition. Renew Energ 179:2004–2015. https://doi.org/10.1016/j.renene.2021.07.141

    Article  CAS  Google Scholar 

  78. Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J, Bohlmann J (2003) (E)-β-Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15(5):1227–1241. https://doi.org/10.1105/tpc.011015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support of Department of Biotechnology (BT/PR12716/PBD/26/478/2015), Department of Science and Technology- Science and Engineering Research Board (DST-SERB)(SERB/F/4983/2015-16), Rajiv Gandhi National Fellowship for OBC Students (UGC) (201819-NFO-2018-19-OBC-ASS-76611), Council of Scientific & Industrial Research (09/347(222)/2017-EMR-I), Department of Science and Technology-Fund for Improvement of S&T Infrastructure (DST-FIST)[SR/FST/LSI-666/2016(C)], and University Grants Commission- Special Assistance Programme (UGC-SAP)[F.4-7/2016/DRS-1 (SAP-II)], Government of India. Authors are also thankful to the Head of Department, Biotechnology and Bioinformatics, North-Eastern Hill University for providing the necessary facilities. Also, the authors thank Mass Spectrometry Facility, Indian Institute of Science, Bangalore for MALDI-TOF MS analysis.

Funding

This study was supported by Department of Biotechnology (BT/PR12716/PBD/26/478/2015), Department of Science and Technology-Science and Engineering Research Board (DST-SERB)(SERB/F/4983/2015-16), Rajiv Gandhi National Fellowship for OBC Students (UGC) (201819-NFO-2018-19-OBC-ASS-76611), Council of Scientific & Industrial Research (09/347(222)/2017-EMR-I), Department of Science and Technology-Fund for Improvement of S&T Infrastructure (DST-FIST)[SR/FST/ LSI-666/2016(C)], and University Grants Commission-Special Assistance Programme (UGC-SAP)[F.4-7/2016/DRS-1 (SAP-II)], Government of India. Authors also received necessary facilities from the Department of Biotechnology and Bioinformatics, North-Eastern Hill University Meghalaya, Shillong, India.

Author information

Authors and Affiliations

Authors

Contributions

NKC performed: conceptualization, methodology, formal analysis, investigation, writing—original draft. Dr. MKM contributed to: formal analysis, writing—original draft. AS contributed to—methodology, formal analysis, writing—original draft. Dr. YM was involved in – methodology, formal analysis, writing—review & editing. Dr. NC was involved in: conceptualization, writing—review & editing, funding acquisition, supervision.

Corresponding author

Correspondence to Neha Chaurasia.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical Approval

Not applicable.

Consent for Publications

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanu, N.K., Mandal, M.K., Srivastava, A. et al. Proteomics Reveals Damaging Effect of Alpha-Cypermethrin Exposure in a Non-Target Freshwater Microalga Chlorella sp. NC-MKM. Curr Microbiol 80, 144 (2023). https://doi.org/10.1007/s00284-023-03179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03179-2

Navigation