Skip to main content

Advertisement

Log in

Synergism Between Multi-Pseudomonas and Cutinase for Biodegradation of Crude Oil-Based Derivatives

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Polyethylene terephthalate (PET) as one of the main crude oil-based derivatives, produces a significant amount of waste that is difficult to degrade. Currently, microbial degradation of PET is an eco-friendly, efficient, and economical method. This study was conducted to propose a novel screening strategy for PET-degrading bacteria, and evaluate their degradation efficiency of PET. Two strains, Pseudomonas nitroreducens S8 and Pseudomonas monteilii S17, were isolated and could utilize PET as a carbon source by co-culture. The combined use of both bacteria gave a synergistic effect on the disruption of the PET surface through colonization behavior, which could enhance the subsequent degradation of PET. Its time of reaching a peak value of PET degradation rate (94.5% at 6 d) was 2 days earlier than these of single bacteria. A similar synergistic effect was also observed in the metabolization of PET monomers, and the metabolic rate was expressed as 82.4% of bis (2-hydroxyethyl) terephthalate (BHET), 64.0% of mono (2-hydroxyethyl) terephthalate (MHET), and 20.0% of terephthalic acid (TPA), respectively. This study is novel in showing the degradation of PET waste by combinations of bacterial pretreatment and enzymatic treatment, which can be a promising method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Kent JA (2013) Handbook of industrial chemistry and biotechnology. Springer Cham, Switzerland. https://doi.org/10.1007/978-3-319-52287-6

    Article  Google Scholar 

  2. Ali SS, Elsamahy T, Al-Tohamy R, Zhu D, Mahmoud YAG, Koutra E, Metwally MA, Kornaros M, Sun JZ (2021) Plastic wastes biodegradation: mechanisms, challenges and future prospects. Sci Total Environ 780:146590. https://doi.org/10.1016/j.scitotenv.2021.146590

    Article  CAS  Google Scholar 

  3. Cf SF, Rebello S, Mathachan Aneesh E, Sindhu R, Binod P, Singh S, Pandey A (2021) Bioprospecting of gut microflora for plastic biodegradation. Bioengineered 12(1):1040–1053. https://doi.org/10.1080/21655979.2021.1902173

    Article  CAS  Google Scholar 

  4. Lusher AL, Hernandez-Milian G, Berrow S, Rogan E, O’Connor I (2018) Incidence of marine debris in cetaceans stranded and bycaught in Ireland: recent findings and a review of historical knowledge. Environ Pollut 232:467–476. https://doi.org/10.1016/j.envpol.2017.09.070

    Article  CAS  Google Scholar 

  5. Ng W, Minasny B, McBratney A (2020) Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy. Sci Total Environ 702:134723. https://doi.org/10.1016/j.scitotenv.2019.134723

    Article  CAS  Google Scholar 

  6. Kulyukhin SA, Gordeev AV, Seliverstov AF (2020) Gas-phase treatment of polyethylene terephthalate waste in nitrating atmosphere for recycling purposes. J Hazard Materi 400:123268. https://doi.org/10.1016/j.jhazmat.2020.123268

    Article  CAS  Google Scholar 

  7. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351(6278):1196–1199. https://doi.org/10.1126/science.aad6359

    Article  CAS  Google Scholar 

  8. Yan ZF, Wang L, Xia W, Liu ZZ, Gu LT, Wu J (2021) Synergistic biodegradation of poly (ethylene terephthalate) using Microbacterium oleivorans and Thermobifida fusca cutinase. Appl Microbiol and Biotechnol 105(11):4551–4560. https://doi.org/10.1007/s00253-020-11067-z

    Article  CAS  Google Scholar 

  9. Liebminger S, Eberl A, Sousa F, Heumann S, Fischer-Colbrie G, Cavaco-Paulo A, Guebitz GM (2007) Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. Biocatal Biotransform 25(2–4):171–177. https://doi.org/10.1080/10242420701379734

    Article  CAS  Google Scholar 

  10. Chauhan D, Agrawal G, Deshmukh S, Roy SS, Priyadarshini R (2018) Biofilm formation by exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. RSC advances 8(66):37590–37599. https://doi.org/10.1039/c8ra06448b

    Article  CAS  Google Scholar 

  11. Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78(5):1556–1562. https://doi.org/10.1128/AEM.06725-11

    Article  CAS  Google Scholar 

  12. Ronkvist ÅM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules 42(14):5128–5138. https://doi.org/10.1021/ma9005318

    Article  CAS  Google Scholar 

  13. Huang QS, Yan ZF, Chen XQ, Du YY, Li J, Liu ZZ, Xia W, Chen S, Wu J (2022) Accelerated biodegradation of polyethylene terephthalate by Thermobifida fusca cutinase mediated by Stenotrophomonas pavanii. Sci Total Environ 808:152107. https://doi.org/10.1016/j.scitotenv.2021.152107

    Article  CAS  Google Scholar 

  14. Tournier V, Topham C, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S (2020) An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580(7802):216–219. https://doi.org/10.1038/s41586-020-2149-4

    Article  CAS  Google Scholar 

  15. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  16. Sekhar VC, Nampoothiri KM, Mohan AJ, Nair NR, Bhaskar T, Pandey A (2016) Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. J Hazard Materi 318:347–354. https://doi.org/10.1016/j.jhazmat.2016.07.008

    Article  CAS  Google Scholar 

  17. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–179. https://doi.org/10.1016/s0167-7012(00)00122-6

    Article  Google Scholar 

  18. Ren LQ, Chang TT, Ren DP, Zhou Y, Ye BC (2019) Rational design to improve activity of the Est3563 esterase from Acinetobacter sp. LMB-5. Enzyme and Microb Technol. 131:109331. https://doi.org/10.1016/j.enzmictec.2019.04.005

    Article  CAS  Google Scholar 

  19. Chen XQ, Guo ZY, Wang L, Yan ZF, Jin CX, Huang QS, Kong DM, Rao DM, Wu J (2022) Directional-path modification strategy enhances PET hydrolase catalysis of plastic degradation. J Hazard Materi 433:128816. https://doi.org/10.1016/j.jhazmat.2022.128816

    Article  CAS  Google Scholar 

  20. Li DZ, Chen Y, Qian XJ, Liu Y, Ren JL, Xue F, Sun JH, Tang F, Dai JJ (2019) orf20 in prophage phiv142-3 contributes to the adhesion and colonization ability of avian pathogenic Escherichia coli strain DE142 by affecting the formation of flagella and I fimbriae. Vet Microbiol 235:301–309. https://doi.org/10.1016/j.vetmic.2019.07.020

    Article  CAS  Google Scholar 

  21. Mahajan A, Currie CG, Mackie S, Tree J, McAteer S, McKendrick I, McNeilly TN, Roe A, La Ragione RM, Woodward MJ, Gally DL, Smith DGE (2009) An investigation of the expression and adhesin function of H7 flagella in the interaction of Escherichia coli O157:H7 with bovine intestinal epithelium. Cell Microbiol 11(1):121–137. https://doi.org/10.1111/j.1462-5822.2008.01244.x

    Article  CAS  Google Scholar 

  22. Djapovic M, Milivojevic D, Ilic-Tomic T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinovic-Runic J (2021) Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: toxicity study and application in discovery of novel PETases. Chemosphere 275:130005. https://doi.org/10.1016/j.chemosphere.2021.130005

    Article  CAS  Google Scholar 

  23. Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52(3):411–419. https://doi.org/10.1007/s12088-012-0250-6

    Article  CAS  Google Scholar 

  24. Wang PL, Zhao JD, Ruan YQ, Cai XY, Li J, Zhang LH, Huang H (2022) Degradation of polypropylene by the Pseudomonas aeruginosa strains LICME WZH-4 and WGH-6. J Polym Environ 30:1–10. https://doi.org/10.1007/s10924-022-02480-8

    Article  CAS  Google Scholar 

  25. Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M (2017) Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Tech Let 4(7):258–267. https://doi.org/10.1021/acs.estlett.7b00164

    Article  CAS  Google Scholar 

  26. Hirota Y, Naya M, Tada M, Shikyo Y, Kawanishi T, Takiguchi N (2021) Analysis of soil fungal community structure on the surface of buried polyethylene terephthalate. J Polym Environ 29(4):1227–1239. https://doi.org/10.1007/s10924-020-01960-z

    Article  CAS  Google Scholar 

  27. Hosaka M, Kamimura N, Toribami S, Mori K, Kasai D, Fukuda M, Masai E (2013) Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6. Appl Environ Microbiol 79(19):6148–6155. https://doi.org/10.1128/aem.01600-13

    Article  CAS  Google Scholar 

  28. Mückschel B, Simon O, Klebensberger J, Graf N, Rosche B, Altenbuchner J, Pfannstiel J, Huber A, Hauer B (2012) Ethylene glycol metabolism by Pseudomonas putida. Appl Environ Microbiol 78(24):8531–8539. https://doi.org/10.1128/AEM.02062-12

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Foundation of State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development (Grant No. 33550007–21-ZC0613-0060).

Author information

Authors and Affiliations

Authors

Contributions

ZFY: data curation; writing-original draft; conceived and designed the experiments. KWX: data curation. JW: writing-review & editing.

Corresponding author

Correspondence to Zheng-Fei Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

No Applicable.

Consent to Participate

No Applicable.

Consent for Publication

No Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1888 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, ZF., Xu, KW. & Wu, J. Synergism Between Multi-Pseudomonas and Cutinase for Biodegradation of Crude Oil-Based Derivatives. Curr Microbiol 80, 30 (2023). https://doi.org/10.1007/s00284-022-03139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03139-2

Navigation