Skip to main content

Advertisement

Log in

Diet Influences the Gut Microbial Diversity and Olfactory Preference of the German Cockroach Blattella germanica

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The gut microbiota of insects has been proven to play a role in the host’s nutrition and foraging. The German cockroach, Blattella germanica, is an important vector of various pathogens and causes severe allergic reactions in humans. Food bait is an effective and frequently used method of controlling this omnivorous insect. Thus, understanding the relationships among diet, gut microbiota, and olfactory preferences could be useful for optimizing this management strategy. In this study, B. germanica was exposed to different foods, i.e., high-fat diet, high-protein diet, high-starch diet, and dog food (as control). Then their gut microbial and olfactory responses were investigated. 16S rRNA gene sequencing confirmed that the gut microbiota significantly differed across the four treatments, especially in relation to bacteria associated with the metabolism and digestion of essential components. Behavioral tests and the antenna electrophysiological responses showed that insects had a greater preference for other types of diets compared with their long-term domesticated diet. Moreover, continuously providing a single-type diet could change almost all the OR genes’ expression of B. germanica, especially BgORco, which was significantly repressed compared to control. These results indicate that diet can shape the gut microbiota diversity and drive the olfactory preference of B. germanica. The association between gut microbiota profiles and diets can be utilized in managing B. germanica according to their olfactory preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Pernice M, Simpson SJ, Ponton F (2014) Towards an integrated understanding of gut microbiota using insects as model systems. J Insect Physiol 69:12–18

    Article  CAS  Google Scholar 

  2. Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674

    Article  CAS  Google Scholar 

  3. Leitao-Goncalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, Elias AP, Itskov PM, Piper MDW, Ribeiro C (2017) Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 15:e2000862

    Article  Google Scholar 

  4. Sansone CL, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, Gold B, Buchon N, Cherry S (2015) Microbiota-dependent priming of antiviral intestinal immunity in Drosophila. Cell Host Microbe 18:571–581

    Article  CAS  Google Scholar 

  5. Newell PD, Douglas AE (2014) Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microbiol 80:788–796

    Article  CAS  Google Scholar 

  6. Leite-Mondin M, DiLegge MJ, Manter DK, Weir TL, Silva MC, Vivanco JM (2021) The gut microbiota composition of Trichoplusia ni is altered by diet and may influence its polyphagous behavior. Sci Rep 11:1–16

    Article  Google Scholar 

  7. Otani S, Zhukova M, Kone NA, da Costa RR, Mikaelyan A, Sapountzis P, Poulsen M (2019) Gut microbial compositions mirror caste-specific diets in a major lineage of social insects. Environ Microbiol Rep 11:196–205

    Article  Google Scholar 

  8. Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY, Shin NR, Kim SH, Lee WJ, Bae JW (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264

    Article  Google Scholar 

  9. Carrasco P, Perez-Cobas AE, van de Pol C, Baixeras J, Moya A, Latorre A (2014) Succession of the gut microbiota in the cockroach Blattella germanica. Int Microbiol 17:99–109

    CAS  Google Scholar 

  10. Rossmassler K, Dietrich C, Thompson C, Mikaelyan A, Nonoh JO, Scheffrahn RH, Sillam-Dusses D, Brune A (2015) Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome 3:1–6

    Article  Google Scholar 

  11. Kudo R, Masuya H, Endoh R, Kikuchi T, Ikeda H (2019) Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat. ISME J 13:676–685

    Article  CAS  Google Scholar 

  12. Robinson CJ, Schloss P, Ramos Y, Raffa K, Handelsman J (2010) Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microb Ecol 59:199–211

    Article  Google Scholar 

  13. Huang XF, Chaparro JM, Reardon KF, Judd TM, Vivanco JM (2016) Supplementing blends of sugars, amino acids, and secondary metabolites to the diet of termites (Reticulitermes flavipes) drive distinct gut bacterial communities. Microb Ecol 72:497–502

    Article  CAS  Google Scholar 

  14. Wong AC, Dobson AJ, Douglas AE (2014) Gut microbiota dictates the metabolic response of Drosophila to diet. J Exp Biol 217:1894–1901

    Google Scholar 

  15. Broderick NA, Buchon N, Lemaitre B (2014) Microbiota-induced changes in Drosophila melanogaster host gene expression and gut morphology. mBio 5:e01117-01114

    Article  Google Scholar 

  16. Benoit JB, Vigneron A, Broderick NA, Wu Y, Sun JS, Carlson JR, Aksoy S, Weiss BL (2017) Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife 6:e19535

    Article  Google Scholar 

  17. Nasirian H (2017) Infestation of cockroaches (Insecta: Blattaria) in the human dwelling environments: a systematic review and meta-analysis. Acta Trop 167:86–98

    Article  Google Scholar 

  18. Zhang F, Yang R (2019) Life history and functional capacity of the microbiome are altered in beta-cypermethrin-resistant cockroaches. Int J Parasitol 49:715–723

    Article  CAS  Google Scholar 

  19. DeVries ZC, Santangelo RG, Crissman J, Mick R, Schal C (2019) Exposure risks and ineffectiveness of total release foggers (TRFs) used for cockroach control in residential settings. BMC Public Health 19:1–11

    Article  Google Scholar 

  20. Schal C, Hamilton RL (1990) Integrated suppression of synanthropic cockroaches. Annu Rev Entomol 35:521–551

    Article  CAS  Google Scholar 

  21. Pol JC, Jimenez SI, Gries G (2017) New food baits for trapping german cockroaches, Blattella germanica (L.) (Dictyoptera: Blattellidae). J Econ Entomol 110:2518–2526

    Article  CAS  Google Scholar 

  22. Jones SA, Raubenheimer D (2001) Nutritional regulation in nymphs of the German cockroach, Blattella germanica. J Insect Physiol 47:1169–1180

    Article  CAS  Google Scholar 

  23. Perez-Cobas AE, Maiques E, Angelova A, Carrasco P, Moya A, Latorre A (2015) Diet shapes the gut microbiota of the omnivorous cockroach Blattella germanica. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiv022

    Article  Google Scholar 

  24. Liu J, Chang R, Zhang X, Wang Z, Wen J, Zhou T (2018) Non-isoflavones diet incurred metabolic modifications induced by constipation in rats via targeting gut microbiota. Front Microbiol 9:3002

    Article  Google Scholar 

  25. Wada-Katsumata A, Zurek L, Nalyanya G, Roelofs WL, Zhang A, Schal C (2015) Gut bacteria mediate aggregation in the German cockroach. Proc Natl Acad Sci USA 112:15678–15683

    Article  CAS  Google Scholar 

  26. Tegtmeier D, Thompson CL, Schauer C, Brune A (2016) Oxygen affects gut bacterial colonization and metabolic activities in a gnotobiotic cockroach model. Appl Environ Microbiol 82:1080–1089

    Article  CAS  Google Scholar 

  27. Chen L, Li YY, Shao KM (2019) A practical technique for electrophysiologically recording from lamellated antenna of scarab beetle. J Chem Ecol 45:392–401

    Article  CAS  Google Scholar 

  28. He P, Ma YF, Wang MM, Wang H, Dewer Y, Abd El-Ghany NM, Chen GL, Yang GQ, Zhang F, He M (2020) Silencing the odorant coreceptor (Orco) disrupts sex pheromonal communication and feeding responses in Blattella germanica: toward an alternative target for controlling insect-transmitted human diseases. Pest Manag Sci 77:1674–1682

    Article  Google Scholar 

  29. Lo N, Bandi C, Watanabe H, Nalepa C, Beninati T (2003) Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol Biol Evol 20:907–913

    Article  CAS  Google Scholar 

  30. Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    Article  CAS  Google Scholar 

  31. Tinker KA, Ottesen EA (2016) The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Appl Environ Microbiol 82:6603–6610

    Article  CAS  Google Scholar 

  32. Schauer C, Thompson CL, Brune A (2012) The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl Environ Microbiol 78:2758–2767

    Article  CAS  Google Scholar 

  33. Smith CC, Srygley RB, Healy F, Swaminath K, Mueller UG (2017) Spatial structure of the Mormon cricket gut microbiome and its predicted contribution to nutrition and immune function. Front Microbiol 8:801

    Article  Google Scholar 

  34. Park DY, Lee WJ, Jang IH, Lee WJ (2015) Got Lactobacillus? commensals power growth. Cell Host Microbe 18:388–390

    Article  CAS  Google Scholar 

  35. Zeng H, Ishaq SL, Zhao FQ, Wright AG (2016) Colonic inflammation accompanies an increase of beta-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. J Nutr Biochem 35:30–36

    Article  CAS  Google Scholar 

  36. Zeibich L, Staege M, Schmidt O, Drake HL (2019) Amino acids and ribose: drivers of protein and RNA fermentation by ingested bacteria of a primitive gut ecosystem. Appl Environ Microbiol 85:e01297-e1319

    Article  CAS  Google Scholar 

  37. Hooda S, Vester Boler BM, Kerr KR, Dowd SE, Swanson KS (2013) The gut microbiome of kittens is affected by dietary protein:carbohydrate ratio and associated with blood metabolite and hormone concentrations. Br J Nutr 109:1637–1646

    Article  CAS  Google Scholar 

  38. Hang I, Rinttila T, Zentek J, Kettunen A, Alaja S, Apajalahti J, Harmoinen J, de Vos WM, Spillmann T (2012) Effect of high contents of dietary animal-derived protein or carbohydrates on canine faecal microbiota. BMC Vet Res 8:90

    Article  CAS  Google Scholar 

  39. Kuwahara H, Yuki M, Izawa K, Ohkuma M, Hongoh Y (2017) Genome of ‘Ca. Desulfovibrio trichonymphae’, an H2-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut. ISME J 11:766–776

    Article  CAS  Google Scholar 

  40. Suriyakul Na Ayudhaya P, Pongsawasdi P, Laohasongkram K, Chaiwanichsiri S (2016) Properties of cassava starch modified by amylomaltase from Corynebacterium glutamicum. J Food Sci 81:C1363-1369

    Article  CAS  Google Scholar 

  41. Wileyto PE, Boush MG (1983) Attraction of the German Cockroach, Blattella germanica (Orthoptera: Blatellidae), to some volatile food components. J Econ Entomol 76:752–756

    Article  CAS  Google Scholar 

  42. Myers KP (2017) Sensory-specific satiety is intact in rats made obese on a high-fat high-sugar choice diet. Appetite 112:196–200

    Article  Google Scholar 

  43. Nishiyama K, Okada J, Toh Y (2007) Antennal and locomotor responses to attractive and aversive odors in the searching cockroach. J Comp Physiol A 193:963–971

    Article  Google Scholar 

  44. Wong AC, Wang QP, Morimoto J, Senior AM, Lihoreau M, Neely GG, Simpson SJ, Ponton F (2017) Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr Biol 27:2397–2404

    Article  CAS  Google Scholar 

  45. Francois A, Grebert D, Rhimi M, Mariadassou M, Naudon L, Rabot S, Meunier N (2016) Olfactory epithelium changes in germfree mice. Sci Rep 6:24687

    Article  CAS  Google Scholar 

  46. Bienenstock J, Kunze WA, Forsythe P (2018) Disruptive physiology: olfaction and the microbiome-gut-brain axis. Biol Rev Camb Philos Soc 93:390–403

    Article  Google Scholar 

  47. Fischer CN, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick NA (2017) Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife 6:e18855

    Article  Google Scholar 

  48. Jung J, Kim DI, Han GY, Kwon HW (2018) The effects of high fat diet-induced stress on olfactory sensitivity, behaviors, and transcriptional profiling in Drosophila melanogaster. Int J Mol Sci 19:2855

    Article  Google Scholar 

  49. Yuval B (2017) Symbiosis: gut bacteria manipulate host behaviour. Curr Biol 27:R746–R747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Andongma, Awawing Anjwengwo, and Zhenpei Ye for improvements to the manuscript and Shaofang Fang for breeding and domesticating the insect.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

HHX conceived and designed the study. JZ conducted the experiments and wrote the first draft of the manuscript. JZ, YHW, and FL analyzed the data. GDL, JLW, and JQW helped in statistical analyses. HHX edited and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hanhong Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 252 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wu, Y., Lin, F. et al. Diet Influences the Gut Microbial Diversity and Olfactory Preference of the German Cockroach Blattella germanica. Curr Microbiol 80, 23 (2023). https://doi.org/10.1007/s00284-022-03123-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03123-w

Navigation