Skip to main content

Advertisement

Log in

Altered Signatures of Plasma Inflammatory Proteins and Phonotypic Markers of NK Cells in Kidney Transplant Patients upon CMV Reactivation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cytomegalovirus (CMV) reactivation remains a common opportunistic infection with a prominent role in immune reconstitution in organ transplant recipients. CMVs as important drivers of natural killer (NK) cell differentiation has been indicated to prompt several phenotypic and functional alteration in these cells. We aimed to monitor the reconstitution of NK cells and change the signature of inflammatory proteins at the critical phase of CMV reactivation over six months after kidney transplantation. The present study indicated that CMV reactivation is associated with the development of IL-6, IL-10, and cytotoxic granules, including granzyme-B and granulysin, and the drop in the frequency of CD16 + NKG2A-CD57 + NK cell subset in kidney transplant recipients (KTRs) with reactivation versus non- reactivated ones. Our findings describe distinct immune signatures that emerged with CMV reactivation after kidney transplantation, which may be helpful in the timely management of CMV infection in KTRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Karadkhele G, Hogan J, Magua W, Zhang W, Badell IR, Mehta A et al (2021) CMV high-risk status and post-transplant outcomes in kidney transplant recipients treated with Belatacept. Am J Transplant 21(1):208–221. https://doi.org/10.1111/ajt.16132

    Article  CAS  Google Scholar 

  2. Jarque M, Crespo E, Melilli E, Gutiérrez A, Moreso F, Guirado L et al (2020) Cellular immunity to predict the risk of cytomegalovirus infection in kidney transplantation: a prospective, interventional, multicenter clinical trial. Clin Infect Dis 71(9):2375–2385. https://doi.org/10.1093/cid/ciz1209

    Article  CAS  Google Scholar 

  3. Soleimanian S, Yaghobi R, Karimi MH, Geramizadeh B, Roozbeh J (2022) Loss of CCR7 expression on CD57+ CD56/CD16+ NK cells correlates with viral load in CMV reactivated kidney transplant recipients. Iran J Kidney Dis 1(1):52–62

    Google Scholar 

  4. Martín-Gandul C, Pérez-Romero P, Sánchez M, Bernal G, Suárez G, Sobrino M et al (2013) Determination, validation and standardization of a CMV DNA cut-off value in plasma for preemptive treatment of CMV infection in solid organ transplant recipients at lower risk for CMV infection. J J Clin Virol 56(1):13–18. https://doi.org/10.1016/j.jcv.2012.09.017

    Article  CAS  Google Scholar 

  5. Bolovan-Fritts CA, Trout RN, Spector SA (2007) High T-cell response to human cytomegalovirus induces chemokine-mediated endothelial cell damage. Blood 110(6):1857–1863. https://doi.org/10.1182/blood-2007-03-078881

    Article  CAS  Google Scholar 

  6. Soleimanian S, Yaghobi R, Karimi MH, Geramizadeh B, Roozbeh J, Hossein Aghdaie M et al (2021) Circulating NKG2C + NK cell expressing CD107a/LAMP-1 subsets at the onset of CMV reactivation in seropositive kidney transplant recipients. Transpl Immunol 69:101460. https://doi.org/10.1016/j.trim.2021.101460

    Article  CAS  Google Scholar 

  7. Mena-Romo JD, Pérez Romero P, Martín-Gandul C, Gentil M, Suárez-Artacho G, Lage E et al (2017) CMV-specific T-cell immunity in solid organ transplant recipients at low risk of CMV infection Chronology and applicability in preemptive therapy. J Infect 75(4):336–345. https://doi.org/10.1016/j.jinf.2017.05.020

    Article  Google Scholar 

  8. Hall VG, Humar A, Kumar D (2022) Utility of Cytomegalovirus Cell-Mediated Immunity Assays in Solid Organ Transplantation. J Clin Microbiol 60(8):e0171621. https://doi.org/10.1128/jcm.01716-21

    Article  CAS  Google Scholar 

  9. Farzamikia N, Hejazian SM, Haghi M, Hejazian SS, Zununi Vahed S, Ardalan M (2022) Evaluation of telomeric KIR genes and their association with CMV infection in kidney transplant recipients. Immunogenetics 74(2):207–212. https://doi.org/10.1007/s00251-021-01245-2

    Article  CAS  Google Scholar 

  10. Kuijpers TW, Baars PA, Dantin C, van den Burg M, van Lier RA, Roosnek E (2008) Human NK cells can control CMV infection in the absence of T cells. Blood 112(3):914–915. https://doi.org/10.1182/blood-2008-05-157354

    Article  CAS  Google Scholar 

  11. De Maria A, Bozzano F, Cantoni C, Moretta L (2011) Revisiting human natural killer cell subset function revealed cytolytic CD56dimCD16+ NK cells as rapid producers of abundant IFN-γ on activation. Proc Natl Acad Sci U S A 108(2):728–732. https://doi.org/10.1073/pnas.1012356108

    Article  Google Scholar 

  12. Gumá M, Angulo A, Vilches C, Gómez-Lozano N, Malats N, López-Botet M (2004) Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104(12):3664–3671. https://doi.org/10.1182/blood-2004-05-2058

    Article  CAS  Google Scholar 

  13. DeWolfe D, Aid M, McGann K, Ghofrani J, Geiger E, Helzer C et al (2019) NK cell contributes to the immune risk profile in kidney transplant candidates. Front Immunol 23(10):1890. https://doi.org/10.3389/fimmu.2019.01890

    Article  CAS  Google Scholar 

  14. Dendle C, Gan PY, Polkinghorne KR, Ngui J, Stuart RL, Kanellis J et al (2019) Natural killer cell function predicts severe infection in kidney transplant recipients. Am J Transplant 19(1):166–177. https://doi.org/10.1111/ajt.14900

    Article  Google Scholar 

  15. Poli A, Michel T, Thérésine M, Andrès E, Hentges F, Zimmer J (2009) CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126(4):458–465. https://doi.org/10.1111/j.1365-2567.2008.03027.x

    Article  CAS  Google Scholar 

  16. Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E et al (2005) Characterization of CD56–/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci U S A 102(8):2886–2891. https://doi.org/10.1073/pnas.0409872102

    Article  CAS  Google Scholar 

  17. Kärre K (2008) Natural killer cell recognition of missing self. Nat Immunol 9(5):477–480. https://doi.org/10.1038/ni0508-477

    Article  CAS  Google Scholar 

  18. Bhatnagar N, Ahmad F, Hong HS, Eberhard J, Lu IN, Ballmaier M et al (2014) FcγRIII (CD16)-mediated ADCC by NK cells is regulated by monocytes and FcγRII (CD32). Eur J Immunol 44(11):3368–3379. https://doi.org/10.1002/eji.201444515

    Article  CAS  Google Scholar 

  19. Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L (2019) Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol 16(5):430–441. https://doi.org/10.1038/s41423-019-0206-4

    Article  CAS  Google Scholar 

  20. Yaghobi R, Behzad-Behbahani A, Sabahi F, Roustaee MH, Alborzi A, Ramzi M, Nourani H (2005) Comparative analysis of a double primer PCR assay with plasma, leukocytes and antigenemia for diagnosis of active human cytomegalovirus infection in bone marrow transplant patients. Bone Marrow Transplant 35(6):595–599. https://doi.org/10.1038/sj.bmt.1704797

    Article  CAS  Google Scholar 

  21. Afshari A, Yaghobi R, Karimi MH, Darbouy M, Azarpira N, Geramizadeh B et al (2015) IL-17 mRNA expression and cytomegalovirus infection in liver transplant patients. Exp Clin Transplant 13(Suppl 1):83–89

    Google Scholar 

  22. Pazina T, MacFarlane AWt, Bernabei L, Dulaimi E, Kotcher R, Yam C et al (2021) Alterations of NK cell phenotype in the disease course of multiple myeloma. Cancers (Basel) 13(2):226. https://doi.org/10.3390/cancers13020226

    Article  CAS  Google Scholar 

  23. Carrillo-Bustamante P, Keşmir C, de Boer RJ (2016) The evolution of natural killer cell receptors. Immunogenetics 68(1):3–18. https://doi.org/10.1007/s00251-015-0869-7

    Article  CAS  Google Scholar 

  24. Soleimanian S, Yaghobi R (2020) Harnessing memory NK cell to protect against COVID-19. Front Pharmacol 20(11):1309. https://doi.org/10.3389/fphar.2020.01309

    Article  CAS  Google Scholar 

  25. Foley B, Cooley S, Verneris MR, Curtsinger J, Luo X, Waller EK et al (2012) Human cytomegalovirus (CMV)-induced memory-like NKG2C+ NK cells are transplantable and expand in vivo in response to recipient CMV antigen. J Immunol 189(10):5082–5088. https://doi.org/10.4049/jimmunol.1201964

    Article  CAS  Google Scholar 

  26. Young A, Ngiow SF, Gao Y, Patch A-M, Barkauskas DS, Messaoudene M et al (2018) A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. C Cancer Res 78(4):1003–1016. https://doi.org/10.1158/0008-5472.CAN-17-2826

    Article  CAS  Google Scholar 

  27. Bozzano F, Della Chiesa M, Pelosi A, Antonini F, Ascierto ML, Del Zotto G et al (2021) HCMV-controlling NKG2C+ NK cells originate from novel circulating inflammatory precursors. J Allergy Clin Immunol 147(6):2343–2357. https://doi.org/10.1016/j.jaci.2020.12.648

    Article  CAS  Google Scholar 

  28. Jang JE, Hwang DY, Chung H, Kim S-J, Eom J-I, Jeung H-K et al (2019) Early cytomegalovirus reactivation and expansion of CD56brightCD16dim/− DNAM1+ natural killer cells are associated with antileukemia effect after haploidentical stem cell transplantation in acute leukemia. Biol Blood Marrow Transplant 25(10):2070–2078. https://doi.org/10.1016/j.bbmt.2019.06.008

    Article  CAS  Google Scholar 

  29. Rizzo R, Zatelli MC, Rotola A, Cassai E, Degli Uberti E, Di Luca D et al (2016) Increase in peripheral CD3− CD56 bright CD16− natural killer cells in hashimoto’s thyroiditis associated with HHV-6 infection. Adv Exp Med Biol 897:113–120. https://doi.org/10.1007/5584_2015_5010

    Article  CAS  Google Scholar 

  30. Oliviero B, Mantovani S, Varchetta S, Mele D, Grossi G, Ludovisi S et al (2017) Hepatitis C virus-induced NK cell activation causes metzincin-mediated CD16 cleavage and impaired antibody-dependent cytotoxicity. J Hepatol 66(6):1130–1137. https://doi.org/10.1016/j.jhep.2017.01.032

    Article  CAS  Google Scholar 

  31. Zimmer J, Bausinger H, Andrès E, Donato L, Hanau D, Hentges F et al (2007) Phenotypic studies of natural killer cell subsets in human transporter associated with antigen processing deficiency. PLoS ONE 2(10):e1033. https://doi.org/10.1371/journal.pone.0001033

    Article  CAS  Google Scholar 

  32. Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA et al (2006) Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A 103(15):5941–5946. https://doi.org/10.1073/pnas.0601335103

    Article  CAS  Google Scholar 

  33. Nielsen CM, White MJ, Goodier MR, Riley EM (2013) Functional significance of CD57 expression on human NK cells and relevance to disease. Front Immunol 9(4):422. https://doi.org/10.3389/fimmu.2013.00422

    Article  CAS  Google Scholar 

  34. Chan A, Hong DL, Atzberger A, Kollnberger S, Filer AD, Buckley CD et al (2007) CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol 179(1):89–94. https://doi.org/10.4049/jimmunol.179.1.89

    Article  CAS  Google Scholar 

  35. Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H et al (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood, J Am Soc Hematol 116(19):3865–3874

    Google Scholar 

  36. Björkström NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA et al (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116(19):3853–3864. https://doi.org/10.1182/blood-2010-04-281675

    Article  CAS  Google Scholar 

  37. Ali TH, Pisanti S, Ciaglia E, Mortarini R, Anichini A, Garofalo C et al (2014) Enrichment of CD56 dim KIR+ CD57+ highly cytotoxic NK cells in tumour-infiltrated lymph nodes of melanoma patients. Nat Commun 4(5):5639. https://doi.org/10.1038/ncomms6639

    Article  CAS  Google Scholar 

  38. Soleimanian S, Yaghobi R, Karimi MH, Geramizadeh B, Roozbeh J, Aghdaie MH et al (2021) Circulating NKG2C+ NK cell expressing CD107a/LAMP-1 subsets at the onset of CMV reactivation in seropositive kidney transplant recipients. Transpl Immunol 69:101460. https://doi.org/10.1016/j.trim.2021.101460

    Article  CAS  Google Scholar 

  39. Soleimanian S, Yaghobi R, Karimi MH, Geramizadeh B, Roozbeh J (2021) The direct influence of cytomegalovirus lysate on the natural killer cell receptor repertoire. Iran J Allergy Asthma Immunol 20(6):721–733. https://doi.org/10.18502/ijaai.v20i6.8023

    Article  Google Scholar 

  40. Clark SE, Burrack KS, Jameson SC, Hamilton SE, Lenz LL (2019) NK cell IL-10 production requires IL-15 and IL-10 driven STAT3 activation. Front Immunol 4(10):2087. https://doi.org/10.3389/fimmu.2019.02087

    Article  CAS  Google Scholar 

  41. Chan YLT, Zuo J, Inman C, Croft W, Begum J, Croudace J et al (2018) NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol 48(2):316–329. https://doi.org/10.1002/eji.201747134

    Article  CAS  Google Scholar 

  42. Stacey MA, Marsden M, Wang EC, Wilkinson GW, Humphreys IR (2011) IL-10 restricts activation-induced death of NK cells during acute murine cytomegalovirus infection. J Immunol 187(6):2944–2952. https://doi.org/10.4049/jimmunol.1101021

    Article  CAS  Google Scholar 

  43. Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294(1–2):15–22. https://doi.org/10.1016/j.jim.2004.08.008

    Article  CAS  Google Scholar 

  44. Rabe T, Lazar K, Cambronero C, Goelz R, Hamprecht K (2020) Human cytomegalovirus (HCMV) reactivation in the mammary gland induces a proinflammatory cytokine shift in breast milk. Microorganisms 8(2):289. https://doi.org/10.3390/microorganisms8020289

    Article  CAS  Google Scholar 

  45. Holder KA, Grant MD (2019) Human cytomegalovirus IL-10 augments NK cell cytotoxicity. J Leukoc Biol 106(2):447–454. https://doi.org/10.1002/JLB.2AB0418-158RR

    Article  CAS  Google Scholar 

  46. Nowacki TM, Bettenworth D, Ross M, Heidemann J, Lehmann PV, Lügering A (2012) Cytomegalovirus (CMV)-specific perforin and granzyme B ELISPOT assays detect reactivation of CMV infection in inflammatory bowel disease. Cells 1(2):35–50

    Article  CAS  Google Scholar 

  47. Wever PC, Spaeny LH, van der Vliet HJ, Rentenaar RJ, Wolbink AM, Surachno J et al (1999) Expression of granzyme‐B during primary cytomegalovirus infection after renal transplantation. J Infect Dis 179(3):693–696. https://doi.org/10.1086/314629

    Article  CAS  Google Scholar 

  48. Krensky A, Clayberger C (2009) Biology and clinical relevance of granulysin. Tissue Antigens 73(3):193–198. https://doi.org/10.1111/j.1399-0039.2008.01218.x

    Article  CAS  Google Scholar 

  49. Sarwal MM, Jani A, Chang S, Huie P, Wang Z, Salvatierra O Jr et al (2001) Granulysin expression is a marker for acute rejection and steroid resistance in human renal transplantation. Hum Immunol 62(1):21–31. https://doi.org/10.1016/s0198-8859(00)00228-7

    Article  CAS  Google Scholar 

  50. Fauriat C, Long EO, Ljunggren H-G, Bryceson YT (2010) Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 115(11):2167–2176. https://doi.org/10.1182/blood-2009-08-238469

    Article  CAS  Google Scholar 

  51. Froeschle GM, Bedke T, Boettcher M, Huber S, Singer D, Ebenebe CU (2021) T cell cytokines in the diagnostic of early-onset sepsis. Pediatr Res 90(1):191–196. https://doi.org/10.1038/s41390-020-01248-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shiraz University of Medical Sciences [Grant No.13843]. We thank the Abu Ali Sina Transplant Hospital, Shiraz (Shiraz, Iran), and participants for collecting samples.

Author information

Authors and Affiliations

Authors

Contributions

SS, RY, MH-K, BG, and JR conceived the idea and designed the study. SS has performed the experiments and written the manuscript. RY, MH-K, BG, and JR critically revised the article. All authors contributed to the article and approved the final manuscript.

Corresponding author

Correspondence to Ramin Yaghobi.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical Approval

The studies involving human participants were reviewed and approved by the local Ethics Committee of Shiraz University of Medical Sciences (IR.SUMS.REC. 1396. S289).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 229 KB)

Supplementary file2 (PDF 446 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimanian, S., Yaghobi, R., Karimi, M.H. et al. Altered Signatures of Plasma Inflammatory Proteins and Phonotypic Markers of NK Cells in Kidney Transplant Patients upon CMV Reactivation. Curr Microbiol 80, 9 (2023). https://doi.org/10.1007/s00284-022-03116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03116-9

Navigation