Skip to main content
Log in

Preliminary Characterization of Phage-Like Particles from the Male-Killing Mollicute Spiroplasma poulsonii (an Endosymbiont of Drosophila)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacteriophages are vastly abundant, diverse, and influential, but with few exceptions (e.g. the Proteobacteria genera Wolbachia and Hamiltonella), the role of phages in heritable bacteria-arthropod interactions, which are ubiquitous and diverse, remains largely unexplored. Despite prior studies documenting phage-like particles in the mollicute Spiroplasma associated with Drosophila flies, genomic sequences of such phage are lacking, and their effects on the Spiroplasma-Drosophila interaction have not been comprehensively characterized. We used a density step gradient to isolate phage-like particles from the male-killing bacterium Spiroplasma poulsonii (strains NSRO and MSRO-Br) harbored by Drosophila melanogaster. Isolated particles were subjected to DNA sequencing, assembly, and annotation. Several lines of evidence suggest that we recovered phage-like particles of similar features (shape, size, DNA content) to those previously reported in Drosophila-associated Spiroplasma strains. We recovered three ~ 19 kb phage-like contigs (two in NSRO and one in MSRO-Br) containing 21–24 open reading frames, a read-alignment pattern consistent with circular permutation, and terminal redundancy (at least in NSRO). Although our results do not allow us to distinguish whether these phage-like contigs represent infective phage-like particles capable of transmitting their DNA to new hosts, their encoding of several typical phage genes suggests that they are at least remnants of functional phage. We also recovered two smaller non-phage-like contigs encoding a known Spiroplasma toxin (Ribosome Inactivating Protein; RIP), and an insertion element, suggesting that they are packaged into particles. Substantial homology of our particle-derived contigs was found in the genome assemblies of members of the Spiroplasma poulsonii clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw sequence data used for the present study are available at NCBI under Project Number PRJNA545743; BioSamples SAMN11919470, SAMN11919470, SAMN23459927; and SRA SRR17050036, SRR17063333, SRR17065466. Assembled and annotated contigs are available at NCBI under GenBank Accession Nos. OL689226-OL689230 and OL778852.

References

  1. Koskella B, Hernandez CA, Wheatley RM (2022) Understanding the impacts of bacteriophage viruses: from laboratory evolution to natural ecosystems. Ann Rev Virol. https://doi.org/10.1146/annurev-virology-091919-075914

    Article  Google Scholar 

  2. Brüssow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602. https://doi.org/10.1128/MMBR.68.3.560-602.2004

    Article  CAS  Google Scholar 

  3. Łoś J, Zielińska S, Krajewska A, Michalina Z, Małachowska A, Kwaśnicka K, Łoś M (2021) Temperate phages, prophages, and lysogeny. In: Harper DR, Abedon ST, Burrowes BH, McConville ML (eds) Bacteriophages biology technology therapy. Springer, Cham, pp 119–150

    Chapter  Google Scholar 

  4. Zajdowicz SLW (2022) Diverse phage-encoded toxins and their role in bacterial ecology. In: Hurst CJ (ed) The biological role of a virus. Springer, Cham, pp 173–207

    Chapter  Google Scholar 

  5. Massey JH, Newton ILG (2022) Diversity and function of arthropod endosymbiont toxins. Trends Microbiol 30(2):185–198. https://doi.org/10.1016/j.tim.2021.06.008

    Article  CAS  Google Scholar 

  6. Duron O, Hurst GD (2013) Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Biol 11:45. https://doi.org/10.1186/1741-7007-11-45

    Article  Google Scholar 

  7. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27(2):189–195

    Article  Google Scholar 

  8. Hajek AE, Morris EE, Hendry TA (2019) Context dependent interactions of insects and defensive symbionts: insights from a novel system in siricid woodwasps. Curr Opin Insect Sci. https://doi.org/10.1016/j.cois.2019.03.006

    Article  Google Scholar 

  9. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741–751. https://doi.org/10.1038/nrmicro1969

    Article  CAS  Google Scholar 

  10. Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232(5313):657–658. https://doi.org/10.1038/232657a0

    Article  CAS  Google Scholar 

  11. Bordenstein SR, Bordenstein SR (2022) Widespread phages of endosymbionts: Phage WO genomics and the proposed taxonomic classification of Symbioviridae. PLoS Genet 18(6):e1010227. https://doi.org/10.1371/journal.pgen.1010227

    Article  CAS  Google Scholar 

  12. Perlmutter JI, Bordenstein SR, Unckless RL, LePage DP, Metcalf JA, Hill T, Martinez J, Jiggins FM, Bordenstein SR (2019) The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog 15(9):e1007936. https://doi.org/10.1371/journal.ppat.1007936

    Article  CAS  Google Scholar 

  13. Brandt JW, Chevignon G, Oliver KM (1866) Strand MR (2017) Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc Biol Sci 284:20171925. https://doi.org/10.1098/rspb.2017.1925

    Article  CAS  Google Scholar 

  14. Xie K, Lu YJ, Yang K, Huo SM, Hong XY (2020) Co-infection of Wolbachia and Spiroplasma in spider mite Tetranychus truncatus increases male fitness. Insect Sci 27(5):921–937. https://doi.org/10.1111/1744-7917.12696

    Article  CAS  Google Scholar 

  15. Pollmann M, Moore LD, Krimmer E, D’Alvise P, Hasselmann M, Perlman SJ, Ballinger MJ, Steidle JLM, Gottlieb Y (2022) Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma. iScience 25(5):104335. https://doi.org/10.1016/j.isci.2022.104335

    Article  CAS  Google Scholar 

  16. Regassa LB (2014) The Family Spiroplasmataceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes: Firmicutes and Tenericutes. Springer Berlin Heidelberg, Berlin, pp 551–567

    Google Scholar 

  17. Regassa LB, Gasparich GE (2006) Spiroplasmas: evolutionary relationships and biodiversity. Front Biosci 11:2983–3002

    Article  CAS  Google Scholar 

  18. Haselkorn TS, Markow TA, Moran NA (2009) Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila. Mol Ecol 18(6):1294–1305. https://doi.org/10.1111/j.1365-294X.2009.04085.x

    Article  CAS  Google Scholar 

  19. Haselkorn TS (2010) The Spiroplasma heritable bacterial endosymbiont of Drosophila. Fly (Austin) 4(1):80–87. https://doi.org/10.4161/fly.4.1.10883

    Article  CAS  Google Scholar 

  20. Anbutsu H, Fukatsu T (2011) Spiroplasma as a model insect endosymbiont. Environ Microbiol Rep 3(2):144–153

    Article  CAS  Google Scholar 

  21. Williamson DL, Poulson DF (1979) Sex ratio organisms (Spiroplasmas) of Drosophila. In: Whitcomb RF, Tully JG (eds) The mycoplasmas. Academic Press, New York, pp 175–208

    Chapter  Google Scholar 

  22. Montenegro H, Petherwick A, Hurst G, Klaczko L (2006) Fitness effects of Wolbachia and Spiroplasma in Drosophila melanogaster. Genetica 127:207–215. https://doi.org/10.1007/s10709-005-3766-4

    Article  CAS  Google Scholar 

  23. Mateos M, Winter L, Winter C, Higareda-Alvear V, Martinez-Romero E, Xie J (2016) Independent origins of resistance or susceptibility of parasitic wasps to a defensive symbiont. Ecol Evol 6(9):2679–2687. https://doi.org/10.1002/ece3.2085

    Article  Google Scholar 

  24. Gerth M, Martinez-Montoya H, Ramirez P, Masson F, Griffin JS, Aramayo R, Siozios S, Lemaitre B, Mateos M, Hurst GDD (2021) Rapid molecular evolution of Spiroplasma symbionts of Drosophila. Microbial Genomics. https://doi.org/10.1099/mgen.0.000503

    Article  Google Scholar 

  25. Veneti Z, Bentley JK, Koana T, Braig HR, Hurst GD (2005) A functional dosage compensation complex required for male killing in Drosophila. Science 307(5714):1461–1463

    Article  CAS  Google Scholar 

  26. Harumoto T, Lemaitre B (2018) Male-killing toxin in a bacterial symbiont of Drosophila. Nature. https://doi.org/10.1038/s41586-018-0086-2

    Article  Google Scholar 

  27. Harumoto T, Anbutsu H, Lemaitre B, Fukatsu T (2016) Male-killing symbiont damages host’s dosage-compensated sex chromosome to induce embryonic apoptosis. Nat Commun 7:12781. https://doi.org/10.1038/ncomms12781

    Article  CAS  Google Scholar 

  28. Harumoto T, Anbutsu H, Fukatsu T (2014) Male-killing Spiroplasma induces sex-specific cell death via host apoptotic pathway. PLoS Pathog 10(2):e1003956. https://doi.org/10.1371/journal.ppat.1003956

    Article  CAS  Google Scholar 

  29. Garcia-Arraez MG, Masson F, Escobar JCP, Lemaitre B (2019) Functional analysis of RIP toxins from the Drosophila endosymbiont Spiroplasma poulsonii. BMC Microbiol 19(1):46. https://doi.org/10.1186/s12866-019-1410-1

    Article  Google Scholar 

  30. Paredes JC, Herren JK, Schupfer F, Lemaitre B (2016) The role of lipid competition for endosymbiont-mediated protection against parasitoid wasps in Drosophila. mBio 7(4):e01006-01016. https://doi.org/10.1128/mBio.01006-16

    Article  CAS  Google Scholar 

  31. Herren JK, Paredes JC, Schüpfer F, Arafah K, Bulet P, Lemaitre B (2014) Insect endosymbiont proliferation is limited by lipid availability. Elife 3:e02964. https://doi.org/10.7554/eLife.02964

    Article  CAS  Google Scholar 

  32. Herren JK, Paredes JC, Schupfer F, Lemaitre B (2013) Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery. mBio 4(2):e00532–e00512. https://doi.org/10.1128/mBio.00532-12

    Article  Google Scholar 

  33. Ballinger MJ, Perlman SJ (2017) Generality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathog 13(7):e1006431. https://doi.org/10.1371/journal.ppat.1006431

    Article  CAS  Google Scholar 

  34. Hamilton PT, Peng F, Boulanger MJ, Perlman SJ (2016) A ribosome-inactivating protein in a Drosophila defensive symbiont. Proc Natl Acad Sci USA 113(2):350–355. https://doi.org/10.1073/pnas.1518648113

    Article  CAS  Google Scholar 

  35. Higareda Alvear VM, Mateos M, Cortez D, Tamborindeguy C, Martinez-Romero E (2021) Differential gene expression in a tripartite interaction: Drosophila, Spiroplasma and parasitic wasps. PeerJ 9:e11020. https://doi.org/10.7717/peerj.11020

    Article  CAS  Google Scholar 

  36. Mateos M, Silva NO, Ramirez P, Higareda-Alvear VM, Aramayo R, Erickson JW (2019) Effect of heritable symbionts on maternally-derived embryo transcripts. Sci Rep. https://doi.org/10.1038/s41598-019-45371-0

    Article  Google Scholar 

  37. Masson F, Rommelaere S, Schupfer F, Boquete JP, Lemaitre B (2022) Disproportionate investment in Spiralin B production limits in-host growth and favors the vertical transmission of Spiroplasma insect endosymbionts. Proc Natl Acad Sci USA 119(30):e2208461119. https://doi.org/10.1073/pnas.2208461119

    Article  CAS  Google Scholar 

  38. Cohen A, Williamson D, Oishi K (1987) SpV3 viruses of Drosophila spiroplasmas. Isr J Med Sci 23(5):429–433

    CAS  Google Scholar 

  39. Yamada M, Nawa S, Watanabe TK (1982) A mutant of SR organism (SRO) in Drosophila that does not kill the host males. Jpn J Genet 57:301–305

    Article  Google Scholar 

  40. Hackett KJ, Lynn DE, Williamson DL, Ginsberg AS, Whitcomb RF (1986) Cultivation of the Drosophila sex-ratio spiroplasma. Science 232(4755):1253–1255. https://doi.org/10.1126/science.232.4755.1253

    Article  CAS  Google Scholar 

  41. Williamson DL, Sakaguchi B, Hackett KJ, Whitcomb RF, Tully JG, Carle P, Bové JM, Adams JR, Konai M, Henegar RB (1999) Spiroplasma poulsonii sp. nov., a new species associated with male-lethality in Drosophila willistoni, a neotropical species of fruit fly. Int J Syst Bacteriol 49:611–618

    Article  Google Scholar 

  42. Masson F, Calderon Copete S, Schüpfer F, Garcia-Arraez G, Lemaitre B (2018) In vitro culture of the insect endosymbiont Spiroplasma poulsonii highlights bacterial genes involved in host-symbiont interaction. mbio. https://doi.org/10.1128/mBio.00024-18

    Article  Google Scholar 

  43. Williamson D, Oishi K, Poulson D (1977) Viruses of Drosophila sex ratio Spiroplasma. In: Maramorosch K (ed) The atlas of insect and plant viruses. Academic Press, New York, pp 465–472

    Google Scholar 

  44. Whitcomb RF (1980) The genus Spiroplasma. Annu Rev Microbiol 34:677–709. https://doi.org/10.1146/annurev.mi.34.100180.003333

    Article  CAS  Google Scholar 

  45. Cole RM (1979) 14/Mycoplasma and Spiroplasma viruses: ultrastructure. In: Barile MF, Razin S (eds) The mycoplasmas: cell biology. Elsevier, Amsterdam, pp 385–410

    Chapter  Google Scholar 

  46. Maniloff J, Dybvig K (1988) Mycoplasma viruses. CRC Crit Rev Microbiol 15(4):339–389

    Article  CAS  Google Scholar 

  47. Cole RM, Mitchell WO, Garon CF (1977) Spiroplasmavirus citri 3: propagation, purification, proteins, and nucleic acid. Science 198(4323):1262–1263. https://doi.org/10.1126/science.929198

    Article  CAS  Google Scholar 

  48. Dickinson MJ, Townsend R (1984) Characterization of the genome of a rod-shaped virus infecting Spiroplasma citri. J Gen Virol 65(9):1607–1610

    Article  CAS  Google Scholar 

  49. Renaudin J, Bové JM (1994) Spv1 and Spv4, Spiroplasma viruses with circular, single-stranded DNA genomes, and their dontribution to the molecular biology of Spiroplasmas. In: Murphy FA, Shatkin AJ (eds) Maramorosch K. Adv Virus Res, Academic Press, pp 429–463

    Google Scholar 

  50. Rattner R, Thapa SP, Dang T, Osman F, Selvaraj V, Maheshwari Y, Pagliaccia D, Espindola AS, Hajeri S, Chen J, Coaker G, Vidalakis G, Yokomi R (2021) Genome analysis of Spiroplasma citri strains from different host plants and its leafhopper vectors. BMC Genomics 22(1):373. https://doi.org/10.1186/s12864-021-07637-8

    Article  CAS  Google Scholar 

  51. Ku C, Lo W-S, Chen L-L, Kuo C-H (2013) Complete genomes of two dipteran-associated Spiroplasmas provided insights into the origin, dynamics, and impacts of viral invasion in Spiroplasma. Genome Biol Evol 5(6):1151–1164. https://doi.org/10.1093/gbe/evt084

    Article  CAS  Google Scholar 

  52. Chipman P, Agbandje-McKenna M, Renaudin J, Baker T, McKenna R (1998) Structural analysis of the spiroplasma virus, SpV4: implications for evolutionary variation to obtain host diversity among the Microviridae. Structure 6(2):135–145

    Article  CAS  Google Scholar 

  53. Cole RM, Tully JG, Popkin TJ, Bove JM (1973) Morphology, ultrastructure, and bacteriophage infection of the helical mycoplasma-like organism (Spiroplasma citri gen. nov., sp. nov.) cultured from “stubborn” disease of citrus. J Bacteriol 115(1):367–384. https://doi.org/10.1128/jb.115.1.367-386.1973

    Article  CAS  Google Scholar 

  54. Ota T, Kawabe M, Oishi K, Poulson DF (1979) Non-male-killing spiroplasmas in Drosophila hydei. J Hered 70:211–213

    Article  Google Scholar 

  55. Oishi K (1971) Spirochaete-mediated abnormal sex-ratio (SR) condition in Drosophila: a second virus associated with spirochaetes and its use in the study of the SR condition. Genet Res 18(1):45–56. https://doi.org/10.1017/S0016672300012404

    Article  CAS  Google Scholar 

  56. Oishi K, Poulson DF (1970) A virus associated with SR-spirochetes of Drosophila nebulosa. Proc Natl Acad Sci USA 67(3):1565–1572. https://doi.org/10.1073/pnas.67.3.1565

    Article  CAS  Google Scholar 

  57. Oishi K, Poulson D, Williamson D (1984) Virus mediated change in clumping properties of Drosophila SR Spiroplasma. Curr Microbiol 10:153–158. https://doi.org/10.1007/BF01576777

    Article  Google Scholar 

  58. Dickinson MJ, Townsend R (1985) Lysogenisation of spiroplasma citri by a type 3 spiroplasmavirus. Virology 146(1):102–110. https://doi.org/10.1016/0042-6822(85)90056-X

    Article  CAS  Google Scholar 

  59. Mateos M, Castrezana S, Nankivell B, Estes A, Markow TA, Moran NA (2006) Heritable endosymbionts of Drosophila. Genetics 174:363–376. https://doi.org/10.1534/genetics.106.058818

    Article  CAS  Google Scholar 

  60. Miller WJ, Ehrman L, Schneider D (2010) Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog 6(12):e1001214. https://doi.org/10.1371/journal.ppat.1001214

    Article  CAS  Google Scholar 

  61. Bordenstein SR, Wernegreen JJ (2004) Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 21(10):1981–1991. https://doi.org/10.1093/molbev/msh211

    Article  CAS  Google Scholar 

  62. Fujii Y, Kubo T, Ishikawa H, Sasaki T (2004) Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun 317(4):1183–1188. https://doi.org/10.1016/j.bbrc.2004.03.164

    Article  CAS  Google Scholar 

  63. Montenegro H, Solferini VN, Klaczko LB, Hurst GDD (2005) Male-killing Spiroplasma naturally infecting Drosophila melanogaster. Insect Mol Biol 14(3):281–288. https://doi.org/10.1111/j.1365-2583.2005.00558.x

    Article  CAS  Google Scholar 

  64. Kageyama D, Anbutsu H, Watada M, Hosokawa T, Shimada M, Fukatsu T (2006) Prevalence of a non-male-killing Spiroplasma in natural populations of Drosophila hydei. Appl Environ Microbiol 72(10):6667–6673

    Article  CAS  Google Scholar 

  65. Anbutsu H, Goto S, Fukatsu T (2008) High and low temperatures differently affect infection density and vertical transmission of male-killing Spiroplasma symbionts in Drosophila hosts. Appl Environ Microbiol 74(19):6053–6059. https://doi.org/10.1128/aem.01503-08

    Article  CAS  Google Scholar 

  66. Paredes JC, Herren JK, Schüpfer F, Marin R, Claverol S, Kuo C-H, Lemaitre B, Béven L (2015) Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont. mbio 6(2):e02437-02414. https://doi.org/10.1128/mBio.02437-14

    Article  CAS  Google Scholar 

  67. Anbutsu H, Fukatsu T (2003) Population dynamics of male-killing and non-male-killing Spiroplasmas in Drosophila melanogaster. Appl Environ Microbiol 69(3):1428–1434

    Article  CAS  Google Scholar 

  68. Braig HR, Zhou W, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180(9):2373–2378. https://doi.org/10.1128/JB.180.9.2373-2378.1998

    Article  CAS  Google Scholar 

  69. Zhou WG, Rousset F, O’Neill S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B 265:509–515. https://doi.org/10.1098/rspb.1998.0324

    Article  CAS  Google Scholar 

  70. van der Wilk F, Dullemans AM, Verbeek M, van den Heuvel JF (1999) Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acyrthosiphon pisum. Virology 262(1):104–113. https://doi.org/10.1006/viro.1999.9902

    Article  Google Scholar 

  71. Takemura-Uchiyama I, Uchiyama J, Kato S, Inoue T, Ujihara T, Ohara N, Daibata M, Matsuzaki S (2013) Evaluating efficacy of bacteriophage therapy against Staphylococcus aureus infections using a silkworm larval infection model. FEMS Microbiol Lett 347(1):52–60. https://doi.org/10.1111/1574-6968.12220

    Article  CAS  Google Scholar 

  72. Valentine RC, Shapiro BM, Stadtman ER (1968) Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7(6):2143–2152. https://doi.org/10.1021/bi00846a017

    Article  CAS  Google Scholar 

  73. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27(5):722–736. https://doi.org/10.1101/gr.215087.116

    Article  CAS  Google Scholar 

  74. Casjens SR, Gilcrease EB (2009) Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol 502:91–111. https://doi.org/10.1007/978-1-60327-565-1_7

    Article  CAS  Google Scholar 

  75. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100. https://doi.org/10.1093/bioinformatics/bty191

    Article  CAS  Google Scholar 

  76. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  Google Scholar 

  77. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  78. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  Google Scholar 

  79. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  Google Scholar 

  80. McNair K, Aziz RK, Pusch GD, Overbeek R, Dutilh BE, Edwards R (2018) Phage genome annotation using the RAST pipeline. Methods Mol Biol 1681:231–238. https://doi.org/10.1007/978-1-4939-7343-9_17

    Article  CAS  Google Scholar 

  81. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32(1):11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  Google Scholar 

  82. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16-21. https://doi.org/10.1093/nar/gkw387

    Article  CAS  Google Scholar 

  83. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365

    Article  CAS  Google Scholar 

  84. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, Gabler F, Soding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007

    Article  CAS  Google Scholar 

  85. Yang M, Derbyshire MK, Yamashita RA, Marchler-Bauer A (2020) NCBI’s conserved domain database and tools for protein domain analysis. Curr Protoc Bioinform 69(1):e90. https://doi.org/10.1002/cpbi.90

    Article  CAS  Google Scholar 

  86. Nielsen H (2017) Predicting secretory proteins with signalP. Methods Mol Biol 1611:59–73. https://doi.org/10.1007/978-1-4939-7015-5_6

    Article  CAS  Google Scholar 

  87. Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35(Web Server):W429-432. https://doi.org/10.1093/nar/gkm256

    Article  Google Scholar 

  88. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. https://doi.org/10.1006/jmbi.2000.4315

    Article  CAS  Google Scholar 

  89. Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036. https://doi.org/10.1016/j.jmb.2004.03.016

    Article  CAS  Google Scholar 

  90. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32-36. https://doi.org/10.1093/nar/gkj014

    Article  CAS  Google Scholar 

  91. Smit AFA, Hubley R, Green P (2013–2015) RepeatMasker Open-4.0. In.,

  92. Ye F, Melcher U, Rascoe JE, Fletcher J (1996) Extensive chromosome aberrations in Spiroplasma citri Strain BR3. Biochem Genet 34(7–8):269–286. https://doi.org/10.1007/BF02399947

    Article  CAS  Google Scholar 

  93. Bebear CM, Aullo P, Bove JM, Renaudin J (1996) Spiroplasma citri virus SpV1: Characterization of viral sequences present in the spiroplasma host chromosome. Curr Microbiol 32(3):134–140

    Article  CAS  Google Scholar 

  94. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  95. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  Google Scholar 

  96. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  Google Scholar 

  97. Merrill BD, Ward AT, Grose JH, Hope S (2016) Software-based analysis of bacteriophage genomes, physical ends, and packaging strategies. BMC Genomics 17:679. https://doi.org/10.1186/s12864-016-3018-2

    Article  Google Scholar 

  98. Ye FC, Melcher U, Fletcher J (1997) Molecular characterization of a gene encoding a membrane protein of Spiroplasma citri. Gene 189(1):95–100

    Article  CAS  Google Scholar 

  99. Comer J, Fletcher J, Davis RE, Melcher U (2007) Evolution of the Spiroplasma P58 multigene family. Biochem Genet 45(1–2):25–32

    Article  CAS  Google Scholar 

  100. Yu J, Wayadande AC, Fletcher J (2000) Spiroplasma citri surface protein P89 implicated in adhesion to cells of the vector Circulifer tenellus. Phytopathology 90(7):716–722. https://doi.org/10.1094/PHYTO.2000.90.7.716

    Article  CAS  Google Scholar 

  101. Pool JE, Wong A, Aquadro CF (2006) Finding of male-killing Spiroplasma infecting Drosophila melanogaster in Africa implies transatlantic migration of this endosymbiont. Heredity 97(1):27–32. https://doi.org/10.1038/sj.hdy.6800830

    Article  CAS  Google Scholar 

  102. Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2(5):e43. https://doi.org/10.1371/journal.ppat.0020043

    Article  Google Scholar 

  103. Levene SD, Zimm BH (1987) Separations of open-circular DNA using pulsed-field electrophoresis. Proc Natl Acad Sci USA 84(12):4054–4057. https://doi.org/10.1073/pnas.84.12.4054

    Article  CAS  Google Scholar 

  104. Zivanovic Y, Goulet I, Prunell A (1986) Properties of supercoiled DNA in gel electrophoresis: The V-like dependence of mobility on topological constraint DNA-matrix interactions. J Mol Biol 192(3):645–660. https://doi.org/10.1016/0022-2836(86)90282-2

    Article  CAS  Google Scholar 

  105. Alivizatos A, Townsend R, Markham P (1982) Effects of infection with a spiroplasma virus on the symptoms produced by Spiroplasma citri. Ann Appl Biol 101(1):85–91. https://doi.org/10.1111/j.1744-7348.1982.tb00803.x

    Article  Google Scholar 

  106. Fujisawa H, Morita M (1997) Phage DNA packaging. Genes Cells 2(9):537–545. https://doi.org/10.1046/j.1365-2443.1997.1450343.x

    Article  CAS  Google Scholar 

  107. Gual A, Camacho AG, Alonso JC (2000) Functional analysis of the terminase large subunit, G2P, of Bacillus subtilis bacteriophage SPP1. J Biol Chem 275(45):35311–35319. https://doi.org/10.1074/jbc.M004309200

    Article  CAS  Google Scholar 

  108. Meyer RR, Laine PS (1990) The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev 54(4):342–380. https://doi.org/10.1128/mr.54.4.342-380.1990

    Article  CAS  Google Scholar 

  109. Lang AS, Westbye AB, Beatty JT (2017) The distribution, evolution, and roles of gene transfer agents in prokaryotic genetic exchange. Annu Rev Virol 4(1):87–104. https://doi.org/10.1146/annurev-virology-101416-041624

    Article  CAS  Google Scholar 

  110. Berglund EC, Frank AC, Calteau A, Vinnere Pettersson O, Granberg F, Eriksson AS, Naslund K, Holmberg M, Lindroos H, Andersson SG (2009) Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii. PLoS Genet 5(7):e1000546. https://doi.org/10.1371/journal.pgen.1000546

    Article  CAS  Google Scholar 

  111. Jones JE, Hurst GD (2020) Symbiont-mediated fly survival is independent of defensive symbiont genotype in the Drosophila melanogaster–Spiroplasma–wasp interaction. J Evol Biol 33(11):1625–1633. https://doi.org/10.1111/jeb.13702

    Article  CAS  Google Scholar 

  112. Humayun MZ, Zhang Z, Butcher AM, Moshayedi A, Saier MH Jr (2017) Hopping into a hot seat: Role of DNA structural features on IS5-mediated gene activation and inactivation under stress. PLoS ONE 12(6):e0180156. https://doi.org/10.1371/journal.pone.0180156

    Article  CAS  Google Scholar 

  113. Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M (2015) Everyman’s guide to bacterial insertion sequences. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MDNA3-0030-2014

    Article  Google Scholar 

  114. Masson F, Lemaitre B (2020) Growing ungrowable Bacteria: overview and perspectives on insect symbiont culturability. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.00089-20

    Article  Google Scholar 

  115. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Anika Stankov for technical assistance. Paul de Figueiredo provided feedback on the research and early versions of the manuscript. Portions of this research were conducted with high-performance research computing resources provided by Texas A&M University (https://hprc.tamu.edu). This research was conducted in partial fulfillment of the Master’s of Science degree requirements of Paulino Ramirez.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the analysis: PR, JCL, JJG, MM. Collected the data: PR, JCL, JJG. Contributed materials, data or analysis tools: PR, JCL, JJG, MM. Performed the analyses and interpreted the results: PR, JCL, JJG, MM. Wrote the paper: PR, MM. Edited the paper: PR, MM, JCL, JJG.

Corresponding author

Correspondence to Mariana Mateos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2022_3099_MOESM1_ESM.jpg

Supplementary file1 (JPG 306 KB) Fig. S1 Original Canu assembly of NSRO phage like contigs. Grey arrows in the reference are imperfect terminal repeats in the contig. A) NSRO-P1, B) NSRO-P2

284_2022_3099_MOESM2_ESM.jpg

Supplementary file2 (JPG 902 KB) Fig. S2 Alignment of Nanopore reads to the original Canu assembly contigs. Grey arrows in the reference are imperfect terminal repeats in the contig. The raw long reads are shown in black. Gray outline boxes in reads represent trimmed regions (i.e., different from reference). A) NSRO-P1, B) NSRO P2

284_2022_3099_MOESM3_ESM.jpg

Supplementary file3 (JPG 595 KB) Fig. S3 Geneious-based alignments with annotated ORFs of (A) NSRO-P1, NSRO-P2 and MSRO-P1 phage-like contigs, and (B) Insertion element identified in the phage particle assembly from NSRO and MSRO-Br. Sites with identical bases in all positions are depicted green in the identity bar. In (B) two ORFs were identified along with inverted repeat sequences (grey). The two sequences have 100% homology, except at terminal ends of the contigs. The yellow ORFs (possible translational frameshift) code for a DDE superfamily endonuclease and mobile element like protein respectively, which can form an Insertion element

284_2022_3099_MOESM4_ESM.png

Supplementary file4 (PNG 386 KB) Fig. S4 Alignment of the nucleotide sequences of NCBI U44405.1 and our particle-derived contigs: NSRO-P1, MSRO-Br-P1, NSRO-P2. Grey = position identical to consensus sequence; black = position different from consensus. Open reading frames (ORFs) are indicated with colored block arrows. The color-coding and labels of our particle-derived contigs follow Fig. 4 (yellow = hypothetical; others assigned a putative function). Yellow annotations in U44405 reflect those in NCBI, whereas the green ones were added as a result of the new findings based on HHPred

Supplementary file5 (XLSX 9 KB)

Supplementary file6 (XLSX 34 KB)

Supplementary file7 (XLSX 350 KB)

Supplementary file8 (XLSX 50 KB)

Supplementary file9 (XLSX 110 KB)

Supplementary file10 (XLSX 581 KB)

Supplementary file11 (DOCX 37 KB)

Supplementary file12 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez, P., Leavitt, J.C., Gill, J.J. et al. Preliminary Characterization of Phage-Like Particles from the Male-Killing Mollicute Spiroplasma poulsonii (an Endosymbiont of Drosophila). Curr Microbiol 80, 6 (2023). https://doi.org/10.1007/s00284-022-03099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03099-7

Navigation