Skip to main content
Log in

Whole-Genome Sequence Analysis of Carbapenem-Heteroresistant Klebsiella pneumoniae and Escherichia coli Isolates

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Carbapenem-heteroresistant isolates can be misclassified as susceptible by in vitro susceptibility tests, leading to treatment failure. The underlying mechanisms of heteroresistance, where the bacterial isolate harbors both resistant and susceptible subpopulations, are poorly understood. The aim of the current study was to clarify molecular mechanisms responsible for carbapenem heteroresistance. Whole-genome shotgun sequencing was performed for both resistant and susceptible subpopulations of three Klebsiella pneumoniae and one Escherichia coli blood isolates, which were identified as carbapenem-heteroresistant by the population analysis profile method. The software from the Center for Genomic Epidemiology was used to identify genomic similarities, antibiotic resistance genes, Multilocus Sequence Typing (MLST), and core-genome MLST(cgMLST). Both susceptible and resistant subpopulations of the E. coli strain had the same MLST profiles. MLST1/2 and cgMLST for E. coli were 46/736 and 119473, respectively. The susceptible and resistant subpopulations of each K. pneumoniae strain exhibited identical MLST profiles. The genetic background for antimicrobial resistance in three K. pneumoniae strains was almost similar between the colonies inside and outside the inhibition zone of each strain, however, there were remarkable differences between the three strains. The blaKPC-2 and blaOXA-48 genes were responsible for carbapenem resistance for E. coli and K. pneumoniae strains, respectively. This is the first study, which has demonstrated similar genotypic and resistant gene profiles in the resistant and susceptible subpopulations of each strain. Additional metabolic and transcriptomic investigations are needed to understand the mechanisms responsible for carbapenem heteroresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mmatli M, Mbelle NM, Maningi NE et al (2020) Emerging transcriptional and genomic mechanisms mediating carbapenem and polymyxin resistance in Enterobacteriaceae: a systematic review of current reports. mSystems 5:e00783-e820. https://doi.org/10.1128/mSystems.00783-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nordmann P, Dortet L, Poirel L (2012) Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 18:263–272. https://doi.org/10.1016/j.molmed.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  3. Abe R, Akeda Y, Sugawara Y et al (2021) Enhanced carbapenem resistance through multimerization of plasmids carrying carbapenemase genes. MBio 12:186–221. https://doi.org/10.1128/mBio.00186-21

    Article  Google Scholar 

  4. Lopez-Camacho E, Pano-Pardo JR, Sotillo A et al (2019) Meropenem heteroresistance in clinical isolates of oxa-48-producing Klebsiella pneumoniae. Diagn Microbiol Infect Dis 93:162–166. https://doi.org/10.1016/j.diagmicrobio.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  5. Tan K, Nguyen J, Nguyen K et al (2020) Prevalence of the carbapenem-heteroresistant phenotype among ESBL-producing Escherichia coli and Klebsiella pneumoniae clinical isolates. J Antimicrob Chemother 75:1506–1512. https://doi.org/10.1093/jac/dkaa048

    Article  CAS  PubMed  Google Scholar 

  6. Nodari CS, Ribeiro VB, Barth AL (2015) Imipenem heteroresistance: high prevalence among Enterobacteriaceae Klebsiella pneumoniae carbapenemase producers. J Med Microbiol 64:124–126. https://doi.org/10.1099/jmm.0.081869-0

    Article  CAS  PubMed  Google Scholar 

  7. Sun JD, Huang SF, Yang SS et al (2015) Impact of carbapenem heteroresistance among clinical isolates of invasive Escherichia coli in Chongqing, southwestern china. Clin Microbiol Infect 21:469.e1–10. https://doi.org/10.1016/j.cmi.2014.12.013

    Article  CAS  Google Scholar 

  8. da Silva AEB, Martins AF, Nodari CS et al (2018) Carbapenem-heteroresistance among isolates of the Enterobacter cloacae complex: Is it a real concern? Eur J Clin Microbiol Infect Dis 37:185–186. https://doi.org/10.1007/s10096-017-3138-x

    Article  CAS  PubMed  Google Scholar 

  9. Gordon NC, Wareham DW (2009) Failure of the microscan walkaway system to detect heteroresistance to carbapenems in a patient with Enterobacter aerogenes bacteremia. J Clin Microbiol 47:3024–3025. https://doi.org/10.1128/JCM.01033-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu Y, Zheng X, Zeng W et al (2020) Mechanisms of heteroresistance and resistance to imipenem in Pseudomonas aeruginosa. Infect Drug Resist 13:1419–1428. https://doi.org/10.2147/IDR.S249475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He J, Jia X, Yang S et al (2018) Heteroresistance to carbapenems in invasive Pseudomonas aeruginosa infections. Int J Antimicrob Agents 51:413–421. https://doi.org/10.1016/j.ijantimicag.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  12. Ikonomidis A, Neou E, Gogou V et al (2009) Heteroresistance to meropenem in carbapenem-susceptible Acinetobacter baumannii. J Clin Microbiol 47:4055–4059. https://doi.org/10.1128/JCM.00959-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li P, Huang Y, Yu L et al (2017) Isolation and whole-genome sequence analysis of the imipenem heteroresistant Acinetobacter baumannii clinical isolate HRAB-85. Int J Infect Dis 62:94–101. https://doi.org/10.1016/j.ijid.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  14. Abe R, Akeda Y, Sugawara Y et al (2020) Characterization of the plasmidome encoding carbapenemase and mechanisms for dissemination of carbapenem-resistant Enterobacteriaceae. mSystems 5:759–820. https://doi.org/10.1128/mSystems.00759-20

    Article  Google Scholar 

  15. El-Halfawy OM, Valvano MA (2015) Antimicrobial heteroresistance: an emerging field in need of clarity. Clin Microbiol Rev 28:191–207. https://doi.org/10.1128/CMR.00058-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clinical and Laboratory Standards Institute (2018) Performance standards for antimicrobial disk susceptibility tests: thirteenth edition M02. CLSI, Wayne, PA, USA

    Google Scholar 

  17. Babraham Bioinformatics. FastQC: a quality control tool for high throughput sequence data. Available at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed July 13, 2021.

  18. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prjibelski A, Antipov D, Meleshko D et al (2020) Using spades de novo assembler. Curr Protoc Bioinformatics 70:e102. https://doi.org/10.1002/cpbi.102

    Article  CAS  PubMed  Google Scholar 

  20. Karakonstantis S, Saridakis I (2020) Colistin heteroresistance in Acinetobacter spp.: Systematic review and meta-analysis of the prevalence and discussion of the mechanisms and potential therapeutic implications. Int J Antimicrob Agents 56:106065. https://doi.org/10.1016/j.ijantimicag.2020.106065

    Article  CAS  PubMed  Google Scholar 

  21. Nicoloff H, Hjort K, Levin BR et al (2019) The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat Microbiol 4:504–514. https://doi.org/10.1038/s41564-018-0342-0

    Article  CAS  PubMed  Google Scholar 

  22. Pantua H, Skippington E, Braun MG et al (2020) Unstable mechanisms of resistance to inhibitors of Escherichia coli lipoprotein signal peptidase. MBio 11:2018–2020. https://doi.org/10.1128/mBio.02018-20

    Article  Google Scholar 

  23. Ezadi F, Jamali A, Heidari A et al (2020) Heteroresistance to colistin in oxacillinase-producing carbapenem-resistant Acinetobacter baumannii clinical isolates from Gorgan, Northern Iran. J Glob Antimicrob Resist 21:380–385. https://doi.org/10.1016/j.jgar.2019.11.010

    Article  PubMed  Google Scholar 

  24. Tato M, Morosini M, Garcia L et al (2010) Carbapenem heteroresistance in VIM-1-producing Klebsiella pneumoniae isolates belonging to the same clone: consequences for routine susceptibility testing. J Clin Microbiol 48:4089–4093. https://doi.org/10.1128/JCM.01130-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zavascki AP, Falci DR, da Silva RC et al (2014) Heteroresistance to carbapenems in new delhi metallo-beta-lactamase-1-producing isolates: a challenge for detection? Infect Control Hosp Epidemiol 35:751–752. https://doi.org/10.1086/676442

    Article  PubMed  Google Scholar 

  26. Domenech-Sanchez A, Hernandez-Alles S, Martinez-Martinez L et al (1999) Identification and characterization of a new porin gene of Klebsiella pneumoniae: Its role in beta-lactam antibiotic resistance. J Bacteriol 181:2726–2732. https://doi.org/10.1128/JB.181.9.2726-2732.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adams-Sapper S, Nolen S, Donzelli GF et al (2015) Rapid induction of high-level carbapenem resistance in heteroresistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 59:3281–3289. https://doi.org/10.1128/AAC.05100-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Agyekum A, Fajardo-Lubian A, Ai X et al (2016) Predictability of phenotype in relation to common beta-lactam resistance mechanisms in Escherichia coli and Klebsiella pneumoniae. J Clin Microbiol 54:1243–1250. https://doi.org/10.1128/JCM.02153-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hjort K, Nicoloff H, Andersson DI (2016) Unstable tandem gene amplification generates heteroresistance variation in resistance within a population to colistin in Salmonella enterica. Mol Microbiol 102:274–289. https://doi.org/10.1111/mmi.13459

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partially supported by Ankara Yıldırım Beyazıt University’s Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

BS collected and identified clinical isolates, performed susceptibility testing and PAP analyses, and drafted the manuscript. RD participated in the design of the molecular study and the analysis of the sequencing data, and drafted the manuscript. OA performed the molecular methods, participated in the sequence analysis, and drafted the manuscript.

Corresponding author

Correspondence to Banu Sancak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study was approved by the institutional ethical committee of Hacettepe University (GO 19/317, 16969557–448, February 28, 2019, 2019/06).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sancak, B., Arı, O. & Durmaz, R. Whole-Genome Sequence Analysis of Carbapenem-Heteroresistant Klebsiella pneumoniae and Escherichia coli Isolates. Curr Microbiol 79, 384 (2022). https://doi.org/10.1007/s00284-022-03087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03087-x

Navigation