Skip to main content

Advertisement

Log in

Characteristic Analysis of Soil-Isolated Bacillus velezensis HY-3479 and Its Antifungal Activity Against Phytopathogens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

During the investigation of beneficial agricultural microorganisms, a novel Bacillus strain was isolated. To isolate an effective microorganism that has antifungal activity, soil samples were collected from an agricultural field in the southern area of Pohang, Korea. One strain that had specificity on plant pathogens was analyzed. According to 16S rRNA sequencing, the isolated bacterium was identified as Bacillus velezensis and was designated as HY-3479. Few assays were taken to analyze the characteristics of the HY-3479 strain. In agar plate assay, HY-3479 showed antifungal effects on Colletotrichum acutatum, Cylindrocarpon destructans, Rhizoctonia solani, and Sclerotinia sclerotiorum. The strain also had various enzymatic activities including protease, amylase, and β-1,3-glucanase, which were relatively higher than control strains. Metabolites study of strain HY-3479 was conducted by GC–MS analysis and the bacterium contained many plant growth promoters like 3-methyl-1-butanol, (R, R)-2,3-butanediol, acetoin, and benzoic acid which were not found in untreated TSB medium. In gene expression analysis, antifungal lipopeptide genes like srfc (surfactin) and ituD (iturin A) were highly produced in the HY-3479 strain compared to the control strain KCTC 13417. B. velezensis strain HY-3479 may be the candidate to be an effective microorganism in agriculture and become a beneficial biocontrol agent with plant growth-promoting activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data used on the present study are available via corresponding author when requested with acceptable reason.

Code Availability

Not applicable.

References

  1. Moon YH, Lee KB, Kim YJ, Koo YM (2011) Current status of EM (effective microorganisms) utilization. Korean Soc Biotechnol Bioeng J 26(1):365–373. https://doi.org/10.7841/ksbbj.2011.26.5.365

    Article  Google Scholar 

  2. Doehlemann G, Ökmen B, Zhu W, Sharon A (2017) Plant pathogenic fungi. Microbiol Spectrum 5(1):2016. https://doi.org/10.1128/microbiolspec.FUNK-0023-2016

    Article  Google Scholar 

  3. Kim SY, Sang MK, Weon HY, Jeon YA, Ryoo JH, Song J (2016) Characterization of multifunctional Bacillus sp. GH1–13. Korean J Pestic Sci 20(3):189–196. https://doi.org/10.7585/kjps.2016.20.3.189

    Article  Google Scholar 

  4. Auta HS, Emenike CU, Fauziah SH (2017) Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ Pollut 231:1552–1559. https://doi.org/10.1016/j.envpol.2017.09.043

    Article  CAS  PubMed  Google Scholar 

  5. Raksha Rao K, Vipin AV, Hariprasad P, Anu Appaiah KA, Venkateswaran G (2017) Biological detoxification of Aflatoxin B 1 by Bacillus licheniformis CFR1. Food Control 71:234–241. https://doi.org/10.1016/j.foodcont.2016.06.040

    Article  CAS  Google Scholar 

  6. Pour MM, Saberi-Riseh R, Esmaeilzadeh-Salestani K, Mohammadinejad R, Loit E (2021) Evaluation of Bacillus velezensis for biological control of Rhizoctonia solani in bean by alginate/gelatin encapsulation supplemented with nanoparticles. J Microbiol Biotechnol 2021(31):1373–1382. https://doi.org/10.4014/jmb.2105.05001

    Article  CAS  Google Scholar 

  7. Jangir M, Sharma S, Sharma S (2021) Development of next-generation formulation against Fusarium oxysporum and unraveling bioactive antifungal metabolites of biocontrol agents. Sci Rep 11:22895. https://doi.org/10.1038/s41598-021-02284-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoon MY, Seo KH, Lee SH, Choi GJ, Jang KS, Choi YH, Kim JC (2012) Antifungal activity of benzoic acid from Bacillus subtilis GDYA-1 against fungal phytopathogens. Res Plant Dis 18(2):109–116. https://doi.org/10.5423/RPD.2012.18.2.109

    Article  CAS  Google Scholar 

  9. Zhan J, Thrall PH, Burdon JJ (2014) Achieving sustainable plant disease management through evolutionary principles. Trends Plant Sci 19(9):570–575. https://doi.org/10.1016/j.tplants.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  10. Kim YS, Lee Y, Cheon W, Park J, Kwon HT, Balaraju K, Jeon Y (2021) Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides. Sci Rep 11(1):1–14. https://doi.org/10.1038/s41598-020-80231-2

    Article  CAS  Google Scholar 

  11. Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, Wang Z (2018) Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chem Biol 13(3):500–505. https://doi.org/10.1021/acschembio.7b00874

    Article  CAS  PubMed  Google Scholar 

  12. Ruiz-Garcia C (2005) Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. Int J Syst Evolut Microbiol 55(1):191–195. https://doi.org/10.1099/ijs.0.63310-0

    Article  CAS  Google Scholar 

  13. Myo EM, Liu B, Ma J, Shi L, Jiang M, Zhang K, Ge B (2019) Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth. Biol Control. https://doi.org/10.1016/j.biocontrol.2019.03.017

    Article  Google Scholar 

  14. Gorai PS, Ghosh R, Konra S, Mandal NC (2021) Biological control of early blight disease of potato caused by Alternaria alternata EBP3 by an endophytic bacterial strain Bacillus velezensis SEB1. Biol Control 156:104551. https://doi.org/10.1016/j.biocontrol.2021.104551

    Article  CAS  Google Scholar 

  15. Ueki A, Takehara T, Ishioka G, Kaku N, Ueki K (2020) β-1, 3-Glucanase production as an anti-fungal enzyme by phylogenetically different strains of the genus Clostridium isolated from anoxic soil that underwent biological disinfestation. Appl Microbiol Biotechnol 104(12):5563–5578. https://doi.org/10.1007/s00253-020-10626-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Xu L, Shen H, Wang J, Liu W, Zhu X, Liu L (2015) Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb & Cd stress response of radish roots. Sci Rep 5(1):1–13. https://doi.org/10.1038/srep18296

    Article  CAS  Google Scholar 

  17. Li QQ, Luo J, Liu XQ et al (2021) Eleutheroside K isolated from Acanthopanax henryi (Oliv.) harms inhibits the expression of virulence-related exoproteins in methicillin-resistant Staphylococcus aureus. Curr Microbiol 78:3980–3988. https://doi.org/10.1007/s00284-021-02631-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4(5):330–337. https://doi.org/10.7150/ijbs.4.330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71(2):826–834. https://doi.org/10.1128/aem.71.2.826-834.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee SY, Weon HY, Kim JJ, Han JH (2016) Biocontrol of leaf mustard powdery mildew caused by Erysiphe cruciferarm using Bacillus velezensis YP2. Korean J Pesticide Sci 20(4):369–374. https://doi.org/10.7585/kjps.2016.20.4.369

    Article  Google Scholar 

  21. Shin JH, Kwak YY, Kim WC, So JH, Shin HS, Park JW, Kim TH, Kim JE, Rhee IK (2008) Isolation of endosulfan degrading bacteria and their degradation characteristics. Korean J Environ Agric 27(3):292–297. https://doi.org/10.5338/KJEA.2008.27.3.292

    Article  Google Scholar 

  22. Munimbazi C, Bullerman LB (1998) Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J Appl Microbiol 84(6):959–968. https://doi.org/10.1046/j.1365-2672.1998.00431.x

    Article  CAS  PubMed  Google Scholar 

  23. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  24. Chae JW, Jo BS, Joo SH, Ahn DH, Chun SS, Cho YJ (2012) Biological and antimicrobial activity of Vaccinium oldhami fruit. J Korean Soc Food Sci Nutr 41(1):1–6. https://doi.org/10.3746/jkfn.2012.41.1.001

    Article  CAS  Google Scholar 

  25. Thakur M, Pandey S, Mewada A, Patil V, Khade M, Goshi E, Sharon M (2014) Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J Drug Deliv 2014:1–9. https://doi.org/10.1155/2014/282193

    Article  CAS  Google Scholar 

  26. Kazanas N (1968) Proteolytic activity of microorganisms isolated from freshwater fish. Appl Microbiol 16(1):128–132. https://doi.org/10.1128/am.16.1.128-132.1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naragani K, Muvva V, Munaganti RK, Bindu BSSNH (2015) Studies on optimization of amylase production by Streptomyces cheonanensis VUK-A isolated from mangrove habitats. J Adv Biol Biotechnol 3(4):165–172. https://doi.org/10.9734/JABB/2015/18025

    Article  Google Scholar 

  28. Yang SJ, Lee DH, Park HM, Jung HK, Park CS, Hong JH (2014) Amylase activity and characterization of Bacillus subtilis CBD2 isolated from Doenjang. Korean J Food Preserv 21(2):286–293. https://doi.org/10.11002/kjfp.2014.21.2.286

    Article  Google Scholar 

  29. Won G, Choi SI, Park N, Kim JE, Kang CH, Kim GH (2021) In Vitro antidiabetic, antioxidant activity, and probiotic activities of Lactiplantibacillus plantarum and Lacticaseibacillus paracasei Strains. Curr Microbiol 78(8):3181–3191. https://doi.org/10.1007/s00284-021-02588-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guder DG, Krishna MSR (2019) Isolation and characterization of potential cellulose degrading bacteria from sheep rumen. J Pure Appl Microbiol 13(3):1831–1839. https://doi.org/10.22207/JPAM.13.3.60

    Article  CAS  Google Scholar 

  31. Cho EK, Jung YJ, Gal SW, Choi YJ (2009) Isolation and characterization of Bacillus licheniformis SC082 degrading fibrin and chitin from shrimp jeot-gal. J Life Sci 19(10):1424–1431. https://doi.org/10.5352/JLS.2009.19.10.1424

    Article  Google Scholar 

  32. Lim SM, Yoon MY, Choi GJ, Choi YH, Jang KS, Shin TS, Park HW, Yu NH, Kim YH, Kim JC (2017) Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathol J 33(5):488–498. https://doi.org/10.5423/PPJ.OA.04.2017.0073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prakash J, Arora NK (2021) Novel metabolites from Bacillus safensis and their antifungal property against Alternaria alternata. Antonie Van Leeuwenhoek 114(8):1245–1258. https://doi.org/10.1007/s10482-021-01598-4

    Article  CAS  PubMed  Google Scholar 

  34. Jin S, Park JH, Yang WS, Hwang CW, Lee JY (2021) Anti-biofilm ability of garlic extract on Pantoea agglomerans and application to biosand filter. Desalin Water Treat 228(2021):84–91. https://doi.org/10.5004/dwt.2021.27317

    Article  CAS  Google Scholar 

  35. Kirk DG, Palonen E, Korkeala H, Lindström M (2014) Evaluation of normalization reference genes for RT-qPCR analysis of spo0A and four sporulation sigma factor genes in Clostridium botulinum Group I strain ATCC 3502. Anaerobe 26:14–19. https://doi.org/10.1016/j.anaerobe.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  36. Athukorala SN, Fernando WD, Rashid KY (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can J Microbiol 55(9):1021–1032. https://doi.org/10.1139/W09-067

    Article  CAS  PubMed  Google Scholar 

  37. Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol 45(14):1522–1554. https://doi.org/10.1080/10643389.2014.955631

    Article  CAS  Google Scholar 

  38. Khan N, Martínez-Hidalgo P, Ice TA, Maymon M, Humm EA, Nejat N, Hirsch AM (2018) Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front Microbiol 9:2363. https://doi.org/10.3389/fmicb.2018.02363

    Article  PubMed  PubMed Central  Google Scholar 

  39. Malviya D, Sahu PK, Singh UB, Paul S, Gupta A, Gupta AR, Brahmaprakash GP (2020) Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. Int J Environ Res Public Health 17(4):1434. https://doi.org/10.3390/ijerph17041434

    Article  CAS  PubMed Central  Google Scholar 

  40. Chen W, Ma X, Wang X, Chen S, Rogiewicz A, Slominski B, Huang F (2019) Establishment of a rapeseed meal fermentation model for iturin A production by Bacillus amyloliquefaciens CX-20. Microb Biotechnol 12(6):1417–1429. https://doi.org/10.1111/1751-7915.13483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  42. Galisa PS, da Silva HA, Macedo AV, Reis VM, Vidal MS, Baldani JI, Simões-Araújo JL (2012) Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J Microbiol Methods 91(1):1–7. https://doi.org/10.1016/j.mimet.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  43. Lee C, Lee S, Shin SG, Hwang S (2008) Real-time PCR determination of rRNA gene copy number: absolute and relative quantification assays with Escherichia coli. Appl Microbiol Biotechnol 78(2):371–376. https://doi.org/10.1007/s00253-007-1300-6

    Article  CAS  PubMed  Google Scholar 

  44. Ku HK, Lim HM, Oh KH, Yang HJ, Jeong JS, Kim SK (2013) Interpretation of protein quantitation using the Bradford assay: comparison with two calculation models. Anal Biochem 434(1):178–180. https://doi.org/10.1016/j.ab.2012.10.045

    Article  CAS  PubMed  Google Scholar 

  45. Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2013) Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8–3 for growth promotion effects on tobacco. Microbes Environ 28(1):42–49. https://doi.org/10.1264/jsme2.ME12085

    Article  PubMed  Google Scholar 

  46. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100(8):4927–4932. https://doi.org/10.1073/pnas.0730845100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sang MK, Kim JD, Kim BS, Kim KD (2011) Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101(6):666–678. https://doi.org/10.1094/PHYTO-08-10-0224

    Article  CAS  PubMed  Google Scholar 

  48. Li T, Li L, Du F, Sun L, Shi J, Long M, Chen Z (2021) Activity and mechanism of action of antifungal peptides from microorganisms: a review. Molecules 26(11):3438. https://doi.org/10.3390/molecules26113438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Park J, Seo S, Han G, Kim K, Kim D, Song J, Kim P (2018) Development of microbial formulation and biological properties using Bacillus velezensis GH1-13. Korean Soc Biotechnol Bioeng J 33(4):237–246. https://doi.org/10.7841/ksbbj.2018.33.4.237

    Article  Google Scholar 

  50. Ramarathnam R, Bo S, Chen Y, Fernando WD, Xuewen G, De Kievit T (2007) Molecular and biochemical detection of fengycin-and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53(7):901–911. https://doi.org/10.1139/W07-049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The phytopathogens used in the investigation were distributed by Korean Rural Development Administration for research purposes. The GC–MS analysis was performed with the support of the Kyungpook National University Joint Experiment Lab.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cher-Won Hwang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest, and that they all agree with the submission of the manuscript.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2834 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Jeon, E.K. & Hwang, CW. Characteristic Analysis of Soil-Isolated Bacillus velezensis HY-3479 and Its Antifungal Activity Against Phytopathogens. Curr Microbiol 79, 357 (2022). https://doi.org/10.1007/s00284-022-03060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03060-8

Navigation