Skip to main content

The Microbiota of Human Lung of Pulmonary Tuberculosis and the Alteration Caused by Anti-tuberculosis Drugs

Abstract

An in-depth understanding of the lung microbiota in tuberculosis (TB) infection could provide optimal strategies for the prophylaxis, diagnosis, and treatment of the disease. Only a few studies have investigated the impact of Mycobacterium tuberculosis (Mtb) infection and anti-TB treatment on the lung microbiota. Bronchoalveolar lavage fluid and blood samples were collected from 23 active TB patients (TBZ), 17 latent tuberculosis infection patients (LTBI), 13 healthy controls (HC), and 14 active TB patients with 1-month anti-TB therapy (TBM) for 16S RNA sequencing and serological indexes, respectively. Low body mass index, albumin, and total triglyceride levels were detected in TBZ. Pulmonary Mtb infection led to a minor decrease in the alpha diversity of the lung microbiota in TBZ than HC, but a significant difference was noted in beta diversity. Subsequently, anti-TB therapy caused a rapid alteration in the lung community structure due to reduced alpha and beta diversity. Proteobacteria were abundant in TBZ samples, while Firmicutes was predominant in the LITB and HC samples. Lactobacillus and Subdoligranulum (genera) were the most unique in the LTBI and HC group, respectively. The TBM group showed the most predominant abundance of Bacteroides, Oscillospira, and Ruminococcus (genera). Functional pathways, such as indole alkaloid biosynthesis, Wnt signaling pathway, endocytosis, and metabolism of xenobiotics by cytochrome P450, significantly decreased in the TBM group compared with TBZ group. Pulmonary TB and anti-TB treatment caused a distinct dysbiosis of the lung microbiome. The current findings suggested potential links between the lung microbiota and TB onset, progression, and treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Fukunaga R, Glaziou P, Harris JB et al (2021) Epidemiology of tuberculosis and progress toward meeting global targets-worldwide, 2019. MMWR Morb Mortal Wkly Rep 70(12):427–430. https://doi.org/10.15585/mmwr.mm7012a4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697. https://doi.org/10.1126/science.1177486

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Grice EA, Kong HH, Renaud G et al (2008) A diversity profile of the human skin microbiota. Genome Res 18(7):1043–1050. https://doi.org/10.1101/gr.075549.107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227. https://doi.org/10.1038/nature11053

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Wade WG (2013) The oral microbiome in health and disease. Pharmacol Res 69(1):137–143. https://doi.org/10.1016/j.phrs.2012.11.006

    CAS  Article  PubMed  Google Scholar 

  6. Ling Z, Kong J, Liu F et al (2010) Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics 11:488. https://doi.org/10.1186/1471-2164-11-488

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Hilty M, Burke C, Pedro H et al (2010) Disordered microbial communities in asthmatic airways. PLoS ONE 5(1):e8578. https://doi.org/10.1371/journal.pone.0008578

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Marri PR, Stern DA, Wright AL et al (2013) Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol 131(2):346-52.e1–3. https://doi.org/10.1016/j.jaci.2012.11.013

    CAS  Article  PubMed  Google Scholar 

  9. Zhou Y, Lin P, Li Q et al (2010) Analysis of the microbiota of sputum samples from patients with lower respiratory tract infections. Acta Biochim Biophys Sin (Shanghai) 42(10):754–761. https://doi.org/10.1093/abbs/gmq081

    Article  Google Scholar 

  10. Cabrera-Rubio R, Garcia-Nunez M, Seto L et al (2012) Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J Clin Microbiol 50(11):3562–3568. https://doi.org/10.1128/JCM.00767-12

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cheung MK, Lam WY, Fung WYW et al (2013) Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing. PLoS ONE 8(1):e54574. https://doi.org/10.1371/journal.pone.0054574

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Cui Z, Zhou Y, Li H et al (2012) Complex sputum microbial composition in patients with pulmonary tuberculosis. BMC Microbiol 12:276. https://doi.org/10.1186/1471-2180-12-276

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Hu Y, Cheng M, Liu B et al (2020) Metagenomic analysis of the lung microbiome in pulmonary tuberculosis-a pilot study. Emerg Microbes Infect 9(1):1444–1452. https://doi.org/10.1080/22221751.2020.1783188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Krishna P, Jain A, Bisen PS (2016) Microbiome diversity in the sputum of patients with pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis 35(7):1205–1210. https://doi.org/10.1007/s10096-016-2654-4

    CAS  Article  PubMed  Google Scholar 

  15. Hu Y, Yang Q, Liu B et al (2019) Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. J Infect 78(4):317–322. https://doi.org/10.1016/j.jinf.2018.08.006

    Article  PubMed  Google Scholar 

  16. Wipperman MF, Fitzgerald DW, Juste MAJ et al (2017) Antibiotic treatment for tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep 7(1):10767. https://doi.org/10.1038/s41598-017-10346-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBNET J 17(1):1–10. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  19. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Katoh K, Misawa K, Kuma K et al (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066. https://doi.org/10.1093/nar/gkf436

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26(7):1641–1650. https://doi.org/10.1093/molbev/msp077

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1):90. https://doi.org/10.1186/s40168-018-0470-z

    Article  PubMed  PubMed Central  Google Scholar 

  23. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27(4):325–347. https://doi.org/10.2307/1942268

    Article  Google Scholar 

  25. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1):290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2

    Article  Google Scholar 

  26. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  27. Douglas GM, Maffei VJ, Zaneveld J et al (2019) PICRUSt2: An improved and extensible approach for metagenome inference. bioRxiv. https://doi.org/10.1101/672295

    Article  Google Scholar 

  28. Deniz O, Gumus S, Yaman H et al (2007) Serum total cholesterol, HDL-C and LDL-C concentrations significantly correlate with the radiological extent of disease and the degree of smear positivity in patients with pulmonary tuberculosis. Clin Biochem 40:162–166. https://doi.org/10.1016/j.clinbiochem.2006.10.015

    CAS  Article  PubMed  Google Scholar 

  29. Maji A, Misra R, Dhakan DB et al (2018) Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol 20(1):402–419. https://doi.org/10.1111/1462-2920.14015

    CAS  Article  PubMed  Google Scholar 

  30. Akpovi CD, Gbaguidi SLH, Anago E et al (2013) Tuberculosis treatment raises total cholesterol level and restores high density lipoprotein cholesterol (HDL-C) in patients with pulmonary tuberculosis. Afr J Biotechnol 12(24):6019–6024. https://doi.org/10.5897/AJB2013.13073

    CAS  Article  Google Scholar 

  31. Fujimura KE, Demoor T, Rauch M et al (2014) House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci USA 111(2):805–810. https://doi.org/10.1073/pnas.1310750111

    CAS  Article  PubMed  Google Scholar 

  32. Zuo K, Li J, Xu Q et al (2019) Dysbiotic gut microbes may contribute to hypertension by limiting vitamin D production. Clin Cardiol 42(8):710–719. https://doi.org/10.1002/clc.23195

    Article  PubMed  PubMed Central  Google Scholar 

  33. Afsal K, Harishankar M, Banurekha VV et al (2014) Effect of 1,25-dihydroxy vitamin D3 on cathelicidin expression in patients with and without cavitary tuberculosis. Tuberculosis (Edinb) 94(6):599–605. https://doi.org/10.1016/j.tube.2014.09.007

    CAS  Article  Google Scholar 

  34. Lopez-Lopez N, Gonzalez-Curiel I, Castaneda-Delgado J et al (2014) Vitamin D supplementation promotes macrophages’ anti-mycobacterial activity in type 2 diabetes mellitus patients with low vitamin D receptor expression. Microbes Infect 16(9):755–761. https://doi.org/10.1016/j.micinf.2014.06.010

    CAS  Article  PubMed  Google Scholar 

  35. Shen Y, Giardino Torchia ML, Lawson GW et al (2012) Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12(4):509–520. https://doi.org/10.1016/j.chom.2012.08.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Schirmer M, Smeekens SP, Vlamakis H et al (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167(7):1897. https://doi.org/10.1016/j.cell.2016.11.046

    CAS  Article  PubMed  Google Scholar 

  37. Verver S, Warren RM, Beyers N et al (2005) Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am J Respir Crit Care Med 171(12):1430–1435. https://doi.org/10.1164/rccm.200409-1200OC

    Article  PubMed  Google Scholar 

  38. Glynn JR, Murray J, Bester A et al (2010) High rates of recurrence in HIV-infected and HIV-uninfected patients with tuberculosis. J Infect Dis 201(5):704–711. https://doi.org/10.1086/650529

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the clinicians who contributed to sample Collection.

Funding

This study was funded by the Wuhan Health and Family Plan Research Program (Grant Nos. WZ17B09 and WX18Q38).

Author information

Authors and Affiliations

Authors

Contributions

HC designed and supervised the study; XZ collected clinical data Plasma and BAL sample; LS performed experiments; MZ analyzed the data and wrote the manuscript. All authors read and approved the final version for publication.

Corresponding author

Correspondence to Huidong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study protocol was conformed to the ethical guidelines of the 1975 Declaration of Helsinki, as revised in 2000 and approved by the Research Ethics Commission of Jinyintan Hospital (KY-2019-Q-01.02).

Informed Consent

All patients provided informed consent before participation in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 2193 KB)

Supplementary file2 (PDF 259 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Shen, L., Zhou, X. et al. The Microbiota of Human Lung of Pulmonary Tuberculosis and the Alteration Caused by Anti-tuberculosis Drugs. Curr Microbiol 79, 321 (2022). https://doi.org/10.1007/s00284-022-03019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03019-9