Skip to main content
Log in

Streptomyces: Derived Active Extract Inhibits Candida albicans Biofilm Formation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Candida albicans is an opportunistic pathogen that causes biofilm-associated infections. C. albicans biofilms are known to display reduced susceptibility to antimicrobials and high rates of acquired antibiotic resistance, and biofilm forming in C. albicans further hampers treatment options and highlights the need for new antibiofilm strategies. Identifying active components from desert actinomycetes strains to inhibit the formation of C. albicans biofilms represents an effective treatment strategy. In this study, actinomycetes that can inhibit C. albicans biofilm formation were isolated from the Taklimakan Desert, and the underlying mechanisms were explored. After screening the anti-C.albicans biofilm activities of culture supernatants from 170 Actinomycete strains, six strains showed significant inhibition of C. albicans biofilm formation. Microscopic examination showed a reduction in biofilm formation of C. albicans treated with supernatants from actinomycetes. Scanning electron microscopy showed that the morphological changes in biofilm cells were caused by cell membrane rupture and cell material leakage. Then, C.albicans biofilms were destroyed by changing the content of extracellular polysaccharides or degrading extracellular DNA. Finally, a preliminary study on active substances extracted from a new species (TRM43335) showed that the substances that inhibited the formation of biofilms might be peptides. This study provides preliminary evidence that desert actinomyces strains have inhibitory effects on the biofilm development of C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferreira AV, Prado CG, Carvalho RR, Dias KST, Dias ALT (2013) Candida albicans and non-C.albicans candida species: comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections. Mycopathologia 175:265–272. https://doi.org/10.1007/s11046-013-9638-z

    Article  PubMed  CAS  Google Scholar 

  2. Pfaller MA, Pappas PG, Wingard JR (2006) Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis 43:S3–S14. https://doi.org/10.1086/504490

    Article  CAS  Google Scholar 

  3. Brown AJP, Brown GD, Netea MG, Gow NAR (2014) Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 22:614–622. https://doi.org/10.1016/j.tim.2014.07.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ramage G, Martinez JP, Lopezribot JL (2010) Candida biofilms on implanted biomaterials: a clinically significant problem. Fems Yeast Res 6:979–986. https://doi.org/10.1111/j.1567-1364.2006.00117.x

    Article  CAS  Google Scholar 

  5. Zeng B, Li J, Wang Y, Chen P, Zhou Y (2017) In vitro and in vivo effects of suloctidil on growth and biofilm formation of the opportunistic fungus Candida albicans. Oncotarget 8:69972–69982. https://doi.org/10.18632/oncotarget.19542

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marina C, Nelson M (2018) Tricyclic antidepressants inhibit, candida albicans, growth and biofilm formation. Int J Antimicrob Agents 52:500–505. https://doi.org/10.1016/j.ijantimicag.2018.06.023

    Article  CAS  Google Scholar 

  7. Taff HT, Mitchell KF, Edward JA, Andes DR (2013) Mechanisms of Candida biofilm drug resistance. Future Microbiol 8:1325–1337. https://doi.org/10.2217/fmb.13.101

    Article  PubMed  CAS  Google Scholar 

  8. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA (2003) Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333. https://doi.org/10.1128/IAI.71.8.4333-4340.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Guo YQ, Wei CL, Liu CX, Li D, Sun J, Huang HY, Zhou HM (2015) Inhibitory effects of oral actinomyces on the proliferation, virulence and biofilm formation of Candida albicans. Arch Oral Biol 60:1368–1374. https://doi.org/10.1016/j.archoralbio.2015.06.015

    Article  PubMed  Google Scholar 

  10. Srivastava V, Dubey AK (2016) Anti-biofilm activity of the metabolites of streptomyces chrestomyceticus strain ADP4 against Candida albicans. J Biosci Bioeng 122:434–440. https://doi.org/10.1016/j.jbiosc.2016.03.013

    Article  PubMed  CAS  Google Scholar 

  11. Cordova-Davalos LE, Escobcdo-Chavez KG, Evangelista-Martinez Z (2018) Inhibition of Candida albicans cell growth and biofilm formation by a bioactive extract produced by soil Streptomyces strain GCAL-25. Arch Biol Sci 70:387–396. https://doi.org/10.2298/ABS170908057C

    Article  Google Scholar 

  12. Yuan LL, Zhang LL, Luo XX, Xia ZF, Sun BB, Zeng H (2020) Streptomyces taklimakanensis sp. nov., an actinomycete isolated from the Taklimakan desert. Antonie Van Leeuwenhoek 113:1023–1031. https://doi.org/10.1007/s10482-020-01416

    Article  PubMed  CAS  Google Scholar 

  13. Balasubramanian S, Othman EM, Kampik D, Stopper H, Hentschel U, Ziebuhr W, Oelschlaeger TA, Abdelmohsen UR (2017) Marine sponge-derived Streptomyces sp. SBT343 extract inhibits staphylococcal biofilm formation. Front Microbiol 8:236. https://doi.org/10.3389/fmicb.2017.00236

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xie TT, Zeng H, Ren XP, Wang N, Chen ZJ, Zhang Y, Chen W (2019) Antibiofilm activity of three Actinomycete strains against Staphylococcus epidermidis. Lett Appl Microbiol 68:73–80. https://doi.org/10.1111/lam.13087

    Article  PubMed  CAS  Google Scholar 

  15. Chun J, Goodfellow MA (1995) phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245. https://doi.org/10.1099/00207713-45-2-240

    Article  PubMed  CAS  Google Scholar 

  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon, (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  PubMed  CAS  Google Scholar 

  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  PubMed  CAS  Google Scholar 

  19. Liu LL, Chen SJ, Long H, Wang C, Cao TY, Hu ZX, Wu D (2016) Establishment of multiplex PCR method for rapid detection of nontuberculous mycobacteriums infection in the hand. Zhonghua Yi Xue Za Zhi 96:1116–1119. https://doi.org/10.3760/cma.j.issn.0376-2491.2016.14.011

    Article  PubMed  CAS  Google Scholar 

  20. Lal P, Sharma D, Pruthi P, Pruthi V (2010) Exopolysaccharide analysis of biofilm-forming Candida albicans. J Appl Microbiol 109:128–136. https://doi.org/10.1111/j.1365-2672.2009.04634.x

    Article  PubMed  CAS  Google Scholar 

  21. Koren S, Walenz BP, Berlin K, Miller J, Bergman NH, Phillippy AM (2016) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Biorxiv. https://doi.org/10.1101/071282

    Article  Google Scholar 

  22. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM: Pilon, (2014) An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963. https://doi.org/10.1371/journal.pone.0112963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, ReichC SR, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hyatt D, Chen GL, LoCascio PF, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  Google Scholar 

  25. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935. https://doi.org/10.1093/bioinformatics/btt509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Saier MH, Tran CV, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186. https://doi.org/10.1093/nar/gkj001

    Article  PubMed  CAS  Google Scholar 

  27. Winnenburg R, Baldwin TK, Urban M, Rawlings C, Köhler J, Hammond-Kosack KE (2006) PHI-base: a new database for pathogen host interactions. Nucleic Acids Res 34:D459–D464. https://doi.org/10.1093/nar/gkj047

    Article  PubMed  CAS  Google Scholar 

  28. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447. https://doi.org/10.1093/nar/gkn656

    Article  PubMed  CAS  Google Scholar 

  29. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325–D328. https://doi.org/10.1093/nar/gki008

    Article  PubMed  CAS  Google Scholar 

  30. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763. https://doi.org/10.1093/bioinformatics/14.9.755

    Article  PubMed  CAS  Google Scholar 

  31. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36. https://doi.org/10.1093/nar/28.1.33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280. https://doi.org/10.1093/nar/gkh063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Deng YY, Li JQ, Wu SF, Zhu YP, He FC (2006) Integrated NR database in protein annotation system and its localization. Comput Eng 32:71–72. https://doi.org/10.3969/j.issn.1000-3428.2006.05.026

    Article  Google Scholar 

  34. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463. https://doi.org/10.1128/AEM.68.11.5459-5463.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vande GV, Kucharikova S, Schrevens S, Himmelreich U, Dijck PV (2014) Towards non-invasive monitoring of pathogen-host interactions during candida albicans biofilm formation using in vivo bioluminescence. Cell Microbiol 16:115–130. https://doi.org/10.1111/cmi.12184

    Article  CAS  Google Scholar 

  37. Yang LF, Liu X, Lv LL, Ma ZM, Feng XC, Ma TH (2018) Dracorhodin perchlorate inhibits biofilm formation and virulence factors of Candida albicans. Med Mycol 28:36–44. https://doi.org/10.1016/j.mycmed.2017.12.011

    Article  CAS  Google Scholar 

  38. Shahzad M, Sherry L, Rajendran R, Edwards CA, Combet E, Gordon R (2014) Utilising polyphenols for the clinical management of Candida albicans biofilms. Int J Antimicrob Ag 44:269–273. https://doi.org/10.1016/j.ijantimicag

    Article  CAS  Google Scholar 

  39. Alalwan H, Ranjith R, Lappin DF, Combet E, Shahzad M, Robertson D, Nile CJ, Williams C (2017) The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials. Front Microbiol 8:659. https://doi.org/10.3389/fmicb.2017.00659

    Article  PubMed  PubMed Central  Google Scholar 

  40. Teodoro GR, Gontijo AVL, Salvador MJ, Tanaka MH, Brighenti FL, Delbem ACB, Delbem CB, Koga-Ito CY (2018) Effects of acetone fraction from buchenavia tomentosa aqueous extract and gallic acid on Candida albicans biofilms and virulence factors. Front Microbiol 9:647. https://doi.org/10.3389/fmicb.2018.00647

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vartika S, Singla RK, Dubey AK (2018) Inhibition of biofilm and virulence factors of Candida albicans by partially purified secondary metabolites of streptomyces chrestomyceticus strain ADP4. Curr Top Med Chem 18:925–945. https://doi.org/10.2174/1568026618666180711154110

    Article  CAS  Google Scholar 

  42. Pellissari CVG, Jorge JH, Marin LM, Sabino-Silva R, Siqueira WL (2021) Statherin-derived peptides as antifungal strategy against Candida albicans. Aech Oral Biol 125:2–5

    Google Scholar 

  43. Rodríguez López AL, Lee MR, Wang NB, Dunn KK, Sanchez H, Raman N, Andes DR, Lynn DM, Paleceka SP (2019) Small-molecule morphogenesis modulators enhance the ability of 14-helical β-peptides to prevent Candida albicans biofilm formation. Antimicrob Agents Chemother 63(9):e02653-18. https://doi.org/10.1128/AAC.02653-18

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dias J, Silva C, Araújo ARD (2020) Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Sci Rep. https://doi.org/10.1038/s41598-020-67041-2

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cools TL, Struyfs C et al (2017) A linear 19-Mer plant defensin-derived peptide acts synergistically with Caspofungin against Candida albicans biofilms. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02051

    Article  PubMed  PubMed Central  Google Scholar 

  46. Raman N, Lee MR, Palecek SP, Edgerton M (2014) Polymer multilayers loaded with antifungal β-peptides kill planktonic Candida albicans and reduce formation of fungal biofilms on the surfaces of flexible catheter tubes. J Control Release 191:54–62. https://doi.org/10.1016/j.jconrel.2014.05.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kharidia R, Liang JF (2011) The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol 49:663–668. https://doi.org/10.1007/s12275-011-1013-5

    Article  PubMed  CAS  Google Scholar 

  48. Park SC, Park Y, Hahm KS (2011) The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci 12:5971–5992. https://doi.org/10.3390/ijms12095971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. de la Fuente-Nunez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, Hancock RE (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–704. https://doi.org/10.1128/AAC.00064-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This paper was funded by the Guangxi Natural Science Foundation. Grant Number (Nos. AD22035111, yy 2021sk001) and professional English editing company.

Funding

This paper was funded by Guangxi Natural Science Foundation. Grant Number [No. AD22035111].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The oversight and leadership responsibilities of the research planning and execution, including mentorship external to the core team, were performed by LT and HZ. The overall replication/reproduction of the experiments and other research results were performed by SY. The first draft of the manuscript was written by SY, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Li-ping Teng or Hong Zeng.

Ethics declarations

Conflict of interest

Authors declare that there are no conficts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2221 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Sq., Zhou, Hj., Teng, Lp. et al. Streptomyces: Derived Active Extract Inhibits Candida albicans Biofilm Formation. Curr Microbiol 79, 332 (2022). https://doi.org/10.1007/s00284-022-03013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03013-1

Navigation