Skip to main content
Log in

Oceanobacillus saliphilus sp. nov., Isolated from Saline−Alkali Soil in Heilongjiang Province, China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A novel bacterium, designated strain APA_H-1(4)T, was isolated from the saline−alkaline soil, Zhaodong, Heilongjiang Province, China. Phenotypic and chemotaxonomic analyses, and whole-genome sequencing were used to determine the taxonomic position of the strain. Phylogenetic analysis indicated that the isolate belongs to the genus Oceanobacillus, and showed the highest sequence similarity to O. damuensis KCTC 33146T (98.35%, similarity) and ‘O. massiliensis’ DSM 24644 (98.32%). The average nucleotide identity values between strain APA_H-1(4)T and other members of the genus Oceanobacillus were lower than 82% recommended for distinguishing novel prokaryotic species. The digital DNA−DNA hybridization values of strain APA_H-1(4)T with O. damuensis KCTC 33146T and ‘O. massiliensis’ DSM 24644 were 13.60 and 17.60%, respectively. Cells of strain APA_H-1(4)T were Gram-staining positive, motile, aerobic, spore-forming rods (0.5–0.7 × 1.8–2.6 μm) with flagella. The growth was found to occur optimally at 37 °C. The whole-cell hydrolysate contained meso-diaminopimelic acid as the diagnostic cell wall diamino acid. The main detected polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified phospholipid and an unidentified polar lipid. The predominant respiratory quinone was identified as menaquinone-7 (MK-7). The major cellular fatty acid (>10%) was anteiso-C15:0. The G + C content of the genomic DNA was determined to be 38.4% based on the draft genome sequence. Based on the comparative analysis of polyphasic taxonomic data, strain APA_H-1(4)T represents a novel species of the genus Oceanobacillus, for which the name Oceanobacillus saliphilus sp. nov. is proposed. The type strain is APA_H-1(4)T (=GDMCC 1.2239T = KCTC 43254T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lu J, Nogi Y, Takami H (2001) Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297

    Article  CAS  PubMed  Google Scholar 

  2. Ouyang YC, Xiang WZ, Wang GH (2015) Oceanobacillus bengalensis sp. nov., a bacterium isolated from seawater of the Bay of Bengal. Antonie Van Leeuwenhoek 108:1189–1196

    Article  Google Scholar 

  3. Raats D, Halpern M (2007) Oceanobacillus chironomi sp. nov., a halotolerant and facultatively alkaliphilic species isolated from a chironomid egg mass. Int J Syst Evol Microbiol 57:255–259

    Article  CAS  PubMed  Google Scholar 

  4. Long XF, Ye RY, Zhang S, Liu B, Zhang YQ, Zeng Z, Tian YQ (2015) Oceanobacillus damuensis sp. nov. and Oceanobacillus rekensis sp. nov., isolated from saline alkali soil samples. Antonie Van Leeuwenhoek 108:731–739

    Article  CAS  PubMed  Google Scholar 

  5. Zhu WY, Yang L, Shi YJ, Mu CG, Wang Y, Kou YR, Yin M, Tang SK (2020) Oceanobacillus halotolerans sp. nov., a bacterium isolated from salt lake in Xinjiang province, north-west China. Arch Microbiol 202:1545–1549

    Article  CAS  PubMed  Google Scholar 

  6. Hirota K, Aino K, Nodasaka Y, Yumoto I (2013) Oceanobacillus indicireducens sp. nov., a facultative alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:1437–1442

    Article  PubMed  Google Scholar 

  7. Yumoto I, Hirota K, Nodasaka Y, Nakajima K (2005) Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus mykiss), and emended description of the genus Oceanobacillus. Int J Syst Evol Microbiol 55:1521–1524

    Article  CAS  PubMed  Google Scholar 

  8. Jiao JY, Liu L, Hua ZS, Fang BZ, Zhou EM, Salam N, Hedlund BP, Li WJ (2021) Microbial dark matter coming to light: challenges and opportunities. Natl Sci Rev 8:nwaa280

    Article  CAS  PubMed  Google Scholar 

  9. Jiao JY, Fu L, Hua ZS, Liu L, Salam N, Liu PF, Lv AP, Wu G, Xian WD, Zhu Q, Zhou EM, Fang BZ, Oren A, Hedlund BP, Jiang HC, Knight R, Cheng L, Li WJ (2021) Insight into the function and evolution of the Wood-Ljungdahl pathway in Actinobacteria. ISME J 15:3005–3018

    Article  CAS  PubMed  Google Scholar 

  10. Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, Quake SR (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 104(29):11889–11894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hyun DW, Whon TW, Kim JY, Kim PS, Bae JW (2015) Genomic analysis of the moderately haloalkaliphilic bacterium Oceanobacillus kimchii strain x50(t) with improved high-quality draft genome sequences. J Microbiol Biotechnol 25(12):1971–1976

    Article  CAS  PubMed  Google Scholar 

  12. Hagaggi N (2020) Studies on the extremo-lipase produced by the halotolerant Oceanobacillus iheyensis strain QCS. Novel Res Microbiol J 4(4):907–920

    Article  Google Scholar 

  13. Kavita K, Singh VK, Mishra A, Jha B (2014) Characterisation and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis. Carbohyd Polym 101:29–35

    Article  CAS  Google Scholar 

  14. Wang S, Sun L, Wei D, Salam N, Fang BZ, Dong ZY, Hao XY, Zhang MY, Zhang Z, Li WJ (2021) Nesterenkonia haasae sp. nov., an alkaliphilic actinobacterium isolated from a degraded pasture in Songnen Plain. Arch Microbiol 203:959–966

    Article  CAS  PubMed  Google Scholar 

  15. Roux V, Million M, Robert C, Magne A, Raoult D (2013) Non-contiguous finished genome sequence and description of Oceanobacillus massiliensis sp. nov. Stand Genomic Sci 9:370–384

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428

    Article  PubMed  Google Scholar 

  17. Yoon SH, Ha SM, Kwon S, Lim J, KimY SH, Chun J (2017) Introducing EzBioCloud: a taxonomically united database 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specifc gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  21. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  22. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  23. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth KL (2016) Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 8:12–24

    Article  Google Scholar 

  26. Meier-Kolthof JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  27. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457-462

    Article  CAS  PubMed  Google Scholar 

  28. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069

    Article  CAS  PubMed  Google Scholar 

  29. Murray RG, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RG, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 21–41

    Google Scholar 

  30. Baron EJ, Finegold SM (1990) Bailey and Scott’s diagnostic microbiology, 8th edn. Mosby, St. Louis

    Google Scholar 

  31. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153

    Article  CAS  PubMed  Google Scholar 

  32. Smibert R, Krieg NRM (1994) Phenotypic characterization. In: Gerhardt P, Murray RG, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  33. Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  34. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol 29:319–322

    Article  CAS  Google Scholar 

  35. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  36. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  37. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95

    Article  CAS  Google Scholar 

  38. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  39. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36

    Article  CAS  Google Scholar 

  40. Empadinhas N, Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11:151–161

    CAS  PubMed  Google Scholar 

  41. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Key Research and Development Program of China (2021YFD1500300) and the National Science and Technology Fundamental Resources Investigation Program of China (2021FY100900). WJL and SW were also supported by Introduction project of high-level talents in Xinjiang Uygur Autonomous Region.

Author information

Authors and Affiliations

Authors

Contributions

WJL, SW and LXC designed the research and project outline. SW isolated the bacterium. JYJ and LL performed the genomic data analysis. YTOY, MML, APL and ZTL performed the deposition, physiological and chemotaxonomic experiments. YTOY drafted the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Wen-Jun Li, Li-Xiang Cao or Shuang Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1687 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

OuYang, YT., Li, MM., Lv, AP. et al. Oceanobacillus saliphilus sp. nov., Isolated from Saline−Alkali Soil in Heilongjiang Province, China. Curr Microbiol 79, 301 (2022). https://doi.org/10.1007/s00284-022-02997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02997-0

Navigation