Skip to main content

Advertisement

Log in

Bioactive Microbial Metabolites in Cancer Therapeutics: Mining, Repurposing, and Their Molecular Targets

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The persistence and resurgence of cancer, characterized by abnormal cell growth and differentiation, continues to be a serious public health concern critically affecting public health, social life, and the global economy. Hundreds of putative drug molecules of synthetic and natural origin were approved for anticancer therapy in the last few decades. Although conventional anticancer treatment strategies have promising aspects, several factors such as their limitations, drug resistance, and side effects associated with them demand more effort in repositioning or developing novel therapeutic regimens. The rich heritage of microbial bioactive components remains instrumental in providing novel avenues for cancer therapeutics. Actinobacteria, Firmicutes, and fungi have a plethora of bioactive compounds, which received attention for their efficacy in cancer treatment targeting different pathways responsible for abnormal cell growth and differentiation. Yet the full potential remains underexplored to date, and novel compounds from such microbes are reported regularly. In addition, the advent of computational tools has further augmented the mining of microbial secondary metabolites and identifying their molecular targets in cancer cells. Furthermore, the drug-repurposing strategy has facilitated the use of approved drugs of microbial origin in regulating cancer cell growth and progression. The wide diversity of microbial compounds, different mining approaches, and multiple modes of action warrant further investigations on the current status of microbial metabolites in cancer therapeutics. Hence, in this review, we have critically discussed the untapped potential of microbial products in mitigating cancer progression. The review also summarizes the impact of drug repurposing in cancer therapy and discusses the novel avenues for future therapeutic drug development against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2020) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  Google Scholar 

  2. Kishore S, Kiran K (2019) Cancer scenario in India and its comparison with rest of the world and future perspectives. Ind J Comm Health 31(01):01–03

    Article  Google Scholar 

  3. Gao Y, Shang Q, Li W, Guo W, Stojadinovic A, Mannion C et al (2020) Antibiotics for cancer treatment: a double-edged sword. J Cancer 11(17):5135–5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Joo NE, Ritchie K, Kamarajan P, Miao D, Kapila YL (2012) Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med 1(3):295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silva AET, Guimaraes LA, Ferreira EG, Torres MCM, da Silva AB, Branco PC et al (2017) Bioprospecting anticancer compounds from the marine-derived actinobacteria Actinomadura sp. collected at the Saint Peter and Saint Paul Archipelago (Brazil). J Braz Chem Soc 28(3):465–474

    CAS  Google Scholar 

  6. Chen D, Jin D, Huang S, Wu J, Xu M, Liu T et al (2020) Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett 469:456–467

    Article  CAS  PubMed  Google Scholar 

  7. Ferdous UT, Shishir M, Khan SN, Hoq M (2018) Bacillus spp.: attractive sources of anti-cancer and anti-proliferative biomolecules. Microbial Bioactives 1(1):E033-45

    Article  Google Scholar 

  8. Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK (2017) Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol 8:828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Asker MS, El Sayed OH, Mahmoud MG, Yahya SM, Mohamed SS, Selim MS et al (2018) Production of exopolysaccharides from novel marine bacteria and anticancer activity against hepatocellular carcinoma cells (HepG2). Bull Nat Res Centre 42(1):1–9

    Article  Google Scholar 

  10. Boopathy NS, Kathiresan K (2010) Anticancer drugs from marine flora: an overview. J Oncol 2010:214186

    Google Scholar 

  11. Oku N, Adachi K, Matsuda S, Kasai H, Takatsuki A, Shizuri Y (2008) Ariakemicins A and B, novel polyketide-peptide antibiotics from a marine gliding bacterium of the genus Rapidithrix. Org Lett 10(12):2481–2484

    Article  CAS  PubMed  Google Scholar 

  12. Karpinski TM, Adamczak A (2018) Anticancer activity of bacterial proteins and peptides. Pharmaceutics 10:54

    Article  PubMed Central  CAS  Google Scholar 

  13. Kalinovskaya NI, Romanenko LA, Kalinovsky AI, Dmitrenok PS, Dyshlovoy SA (2013) A new antimicrobial and anticancer peptide producing by the marine deep sediment strain “Paenibacillus profundus” sp. Nov. Sl 79. Nat Prod Commun 8(3):381–384

    CAS  PubMed  Google Scholar 

  14. Ma Z, Wang N, Hu J, Wang S (2012) Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot 65:317–322

    Article  CAS  Google Scholar 

  15. Proietti S, Nardichhi V, Porena M, Giannantoni A (2012) Botulinum toxin type-A toxin activity on prostate cancer cell lines. Urologia 79(2):135–141

    Article  PubMed  Google Scholar 

  16. Bandala C, Perez-Santos JLM, Lara-Padilla E, Lopez GD, Anaya-Ruiz M (2013) Effect of botulinum toxin A on proliferation and apoptosis in the T47D breast cancer cell line. Asian Pac J Cancer Prev 14(2):891–894

    Article  PubMed  Google Scholar 

  17. Li K, Su Z, Gao Y, Lin X, Pang X, Yang B et al (2021) Cytotoxic minor piericidin derivatives from the Actinomycete strain Streptomyces psammoticus SCSIO NS126. Mar Drugs 19(8):428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen HT, Pokhrel AR, Nguyen CT, Pham VTT, Dhakal D, Lim HN et al (2020) Streptomyces sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Sci Rep 10:1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rajivgandhi GN, Ramachandran G, Li JL, Yin L, Manoharan N, Kannan MR et al (2020) Molecular identification and structural detection of anticancer compound from marine Streptomyces akiyoshiensis GRG 6 (KY457710) against MCF-7 breast cancer cells. J King Saudi University Sci 32(8):3463–3469

    Article  Google Scholar 

  20. Li XQ, Yue CW, Xu WH, Lu YH, Huang YJ, Tian P et al (2020) A milbemycin compound isolated from Streptomyces Sp. FJS31–2 with cytotoxicity and reversal of cisplatin resistance activity in A549/DDP cells. Biomed Pharmacother 128:110322

    Article  CAS  PubMed  Google Scholar 

  21. Song Y, Yang J, Yu J, Li J, Yuan J, Wong NK et al (2020) Chlorinated bis-indole alkaloids from deep-sea derived Streptomyces sp. SCSIO 11791 with antibacterial and cytotoxic activities. J Antibiot 73:542–547

    Article  CAS  Google Scholar 

  22. Davies-Bolorunduro OF, Adeleye IA, Akinleye MO, Wang PG (2019) Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment. J Pharmaceut Anal 9:201–208

    Google Scholar 

  23. Chen JK, Yang D, Shen B, Murray V (2017) Bleomycin analogues preferentially cleave at the transcription start sites of actively transcribed genes in human cells. Int J Biochem Cell Biol 85:56–65

    Article  CAS  PubMed  Google Scholar 

  24. Liang Y, Xie X, Chen L, Yan S, Ye X, Anjum K et al (2016) Bioactive polycyclic quinones from marine Streptomyces sp. 182SMLY. Mar Drugs 14:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Shah AM, Wani A, Qazi PH, Rehman S, Mushtaq S, Ali SA et al (2016) Isolation and characterization of alborixin from Streptomyces scabrisporus: a potent cytotoxic agent against human colon (HCT-116) cancer cells. Chem Biol Interact 256:198–208

    Article  CAS  PubMed  Google Scholar 

  26. Um S, Kim YJ, Kwon H, Wen H, Kim SH, Kwon HC et al (2013) Sungsanpin, a Lasso peptide from a deep-sea Streptomycete. J Nat Prod 76:873–879

    Article  CAS  PubMed  Google Scholar 

  27. Um S, Choi TJ, Kim H, Kim BY, Kim SH, Lee SK et al (2013) Ohmyungsamycins A and B: cytotoxic and antimicrobial cyclic peptides produced by Streptomyces sp. from a volcanic island. J Org Chem 78:12321–12329

    Article  CAS  PubMed  Google Scholar 

  28. Fu P, Yang C, Wang Y, Liu P, Ma Y, Xu L et al (2012) Streptocarbazoles A and B, two novel indolocarbazoles from the marine-derived Actinomycete strain Streptomyces sp. FMA Org Lett 14(9):2422–2425

    Article  CAS  PubMed  Google Scholar 

  29. Fu P, Zhuang Y, Wang Y, Liu P, Qi X, Gu K et al (2012) New Indolocarbazoles from a mutant strain of the marine-derived Actinomycete Streptomyces fradiae 007M135. Org Lett 14(24):6194–6197

    Article  CAS  PubMed  Google Scholar 

  30. Kondratyuk TP, Park EJ, Yu R, van Breemen RB, Asolkar RN, Murphy BT et al (2012) Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs 10:451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paiva AD, de Oliveira MD, de Paula SO, Baracat-Pereira MC, Breukink E, Mantovani HC (2012) Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiol 158:2851–2858

    Article  CAS  Google Scholar 

  32. Lu J, Ma Y, Liang J, Xing Y, Xi T, Lu Y (2012) Aureolic acids from a marine-derived Streptomyces sp. WBF16. Microbiol Res 167:590–595

    Article  CAS  PubMed  Google Scholar 

  33. Williams DE, Dalisay DS, Patrick BO, Matainaho T, Andrusiak K, Deshpande R et al (2011) Padanamides A and B, highly modified linear tetrapeptides produced in culture by a Streptomyces sp. isolated from a marine sediment. Org Lett 13(15):3936–3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Motohashi K, Takagi M, Shin-ya K (2010) Tetracenoquinocin and 5-iminoaranciamycin from a sponge-derived Streptomyces sp. Sp080513GE-26. J Nat Prod 73:755–758

    Article  CAS  PubMed  Google Scholar 

  35. Ramalingam V, Varukumar K, Ravikumar V, Rajaram R (2019) Production and structure elucidation of anticancer potential surfactin from marine actinomycete Micromonospora marina. Proc Biochem 78:169–177

    Article  CAS  Google Scholar 

  36. Lotfy MM, Sayed AM, AboulMagd AM, Hassan HM, El Amir D, Abouzid SF et al (2021) Metabolomic profiling, biological evaluation of Aspergillus awamori, the river Nile-derived fungus using epigenetic and OSMAC approaches. RSC Adv 11:6709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parthasarathy R, Chandrika M, Rao HCY, Kamalraj S, Jayabaskaran C, Pugazhendhi A (2020) Molecular profiling of marine endophytic fungi from green algae: assessment of antibacterial and anticancer activities. Proc Biochem 96:11–20

    Article  CAS  Google Scholar 

  38. Jouda JB, Tamokou JD, Mbazoa CD, Sarkar P, Bag PK, Wandji J (2016) Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant gram-negative bacteria. Afri Health Sci 16(3):734–743

    Article  Google Scholar 

  39. Lu Z, Zhu H, Fu P, Wang Y, Zhang Z, Lin H et al (2010) Cytotoxic polyphenols from the marine-derived fungus Penicillium expansum. J Nat Prod 73(5):911–914

    Article  CAS  PubMed  Google Scholar 

  40. Adorisio S, Fierabracci A, Muscari I, Liberati AM, Cannarile L, Thuy TT et al (2019) Fusarubin and anhydrofusarubin isolated from a Cladosporium species inhibit cell growth in human cancer cell lines. Toxins 11(9):503

    Article  CAS  PubMed Central  Google Scholar 

  41. Zhang J, Tao L, Liang Y, Chen L, Mi Y, Zheng L et al (2010) Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs 8(4):1469–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang J, Zhao B, Zhang W, Wu X, Wang R, Huang Y et al (2010) Mycoepoxydiene, a fungal polyketide, induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells. Bioorg Med Chem Lett 20(23):7054–7058

    Article  CAS  PubMed  Google Scholar 

  43. Lee YM, Hong JK, Lee CO, Bae KS, Kim DK, Jung JH (2010) A cytotoxic lipopeptide from the sponge-derived fungus Aspergillus versicolor. Bull Kor Chem Soc 31(1):205–208

    Article  CAS  Google Scholar 

  44. Asami Y, Jang JH, Soung NK, He L, Moon DO, Kim JW et al (2012) Protuboxepin A, a marine fungal metabolite, inducing metaphase arrest and chromosomal misalignment in tumor cells. Bioorg Med Chem 20(12):3799–3806

    Article  CAS  PubMed  Google Scholar 

  45. Myobatake Y, Takeuchi T, Kuramochi K, Kuriyama I, Ishido T, Hirano K et al (2012) Pinophilins A and B, inhibitors of mammalian A-, B-, and Y-family DNA polymerases and human cancer cell proliferation. J Nat Prod 75(2):135–141

    Article  CAS  PubMed  Google Scholar 

  46. Shang Z, Li X, Meng L, Li C, Gao S, Huang C et al (2012) Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118. Chinese J Oceanol Limnol 30:305–314

    Article  CAS  Google Scholar 

  47. Zhang Z, Miao L, Lv C, Sun H, Wei S, Wang B et al (2013) Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis 4(6):e657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amagata T, Tanaka M, Yamada T, Chen YP, Minoura K, Numata A (2013) Additional cytotoxic substances isolated from the sponge-derived Gymnascella dankaliensis. Tetrahedron Lett 54:5960–5962

    Article  CAS  Google Scholar 

  49. Li YX, Himaya SWA, Dewapriya P, Zhang C, Kim SK (2013) Fumigaclavine C from a marine-derived fungus Aspergillus fumigatus induces apoptosis in MCF-7 breast cancer cells. Mar Drugs 11(12):5063–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li CS, Li XM, Gao SS, Lu YH, Wang BG (2013) Cytotoxic anthranilic acid derivatives from deep sea sediment-derived fungus Penicillium paneum SD-44. Mar Drugs 11(8):3068–3076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lv C, Hong Y, Miao L, Li C, Xu G, Wei S et al (2013) Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis 4(12):e952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wijesekara I, Li YX, Vo TS, Ta QV, Ngo DH, Kim SK (2013) Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp. Proc Biochem 48(1):68–72

    Article  CAS  Google Scholar 

  53. Wijesekara I, Zhang C, Ta QV, Vo TS, Li YX, Kim SK (2014) Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol Res 169(4):255–261

    Article  CAS  PubMed  Google Scholar 

  54. Nguyen VT, Lee JS, Qian ZJ, Li YX, Kim KN, Heo SJ et al (2014) Gliotoxin isolated from marine Fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Mar Drugs 12(1):69–87

    Article  CAS  Google Scholar 

  55. Chen L, Gong MW, Peng ZF, Zhou T, Ying MG, Zheng QH et al (2014) The marine fungal metabolite, Dicitrinone B, induces A375 cell apoptosis through the ROS-Related Caspase pathway. Mar Drugs 12(4):1939–1958

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang F, Tong Q, Ma H, Xu H, Hu S, Ma W et al (2015) Indole diketopiperazines from endophytic Chaetomium sp 88194 induce breast cancer cell apoptotic death. Sci Rep 5:9294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang S, Chen H, Li W, Zhu X, Ding W, Li C (2016) Bioactive chaetoglobosins from the mangrove endophytic fungus Penicillium chrysogenum. Mar Drugs 14(10):172

    Article  PubMed Central  CAS  Google Scholar 

  58. Li X, Li XM, Xu GM, Liu Y, Wang BG (2016) 20-Nor-isopimarane cycloethers from the deep-sea sediment-derived fungus Aspergillus wentii SD-310. RSC Adv 6:75981

    Article  CAS  Google Scholar 

  59. Ma YM, Liang XA, Zhang HC, Liu R (2016) Cytotoxic and antibiotic cyclic pentapeptide from an endophytic Aspergillus tamarii of Ficus carica. J Agric Food Chem 64(19):3789–3793

    Article  CAS  PubMed  Google Scholar 

  60. Zhou H, Sun X, Li N, Che Q, Zhu T, Gu Q et al (2016) Isoindolone-containing meroperpenoids from the endophytic fungus Emericella nidulans HDN12-249. Org Lett 18(18):4670–4673

    Article  CAS  PubMed  Google Scholar 

  61. Meghavarnam AK, Salah M, Sreepriya M, Janakiraman S (2017) Growth inhibitory and proapoptotic effects of l-asparaginase from Fusarium culmorum ASP-87 on human leukemia cells (Jurkat). Fundam Clin Pharmacol 31(3):292–300

    Article  CAS  PubMed  Google Scholar 

  62. Jans PE, Mfuh AM, Arman HD, Shaffer CV, Larionov OV, Mooberry SL (2017) Cytotoxicity and mechanism of action of the marine-derived fungal metabolite Trichodermamide B and synthetic analogues. J Nat Prod 80:676–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vala AK, Sachaniya B, Dudhagara D, Panseriya HZ, Gosai H, Rawal R et al (2018) Characterization of l-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. Int J Biol Macromol 108:41–46

    Article  CAS  PubMed  Google Scholar 

  64. Wang L, Huang Y, Huang C, Yu J, Zheng Y, Chen Y et al (2020) A marine alkaloid, ascomylactam A, suppresses lung tumorigenesis via inducing cell cycle G1/S arrest through ROS/Akt/Rb pathway. Mar Drugs 18:0494

    Article  CAS  Google Scholar 

  65. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nature Rev Clin Oncol 17:395–417

    Article  Google Scholar 

  66. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nature Rev Cancer 4:253–265

    Article  CAS  Google Scholar 

  67. Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17(2):93–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zong ZP, Kujikawa-Yamamoto K, Li AL, Yamaguchi N, Chang YG, Murakami M et al (1999) Both low and high concentrations of staurosporine induce G1 arrest through down-regulation of cyclin E and cdk2 expression. Cell Struct Funct 24(6):457–463

    Article  CAS  PubMed  Google Scholar 

  69. Laudisi F, Cherubini F, Monteleone G, Stolfi C (2018) STAT3 interactors as potential therapeutic targets for cancer treatment. Int J Mol Sci 19(6):1787

    Article  PubMed Central  CAS  Google Scholar 

  70. Zhu F, Zhao X, Li J, Guo L, Bai L, Qi X (2020) A new compound Trichomicin exerts antitumor activity through STAT3 signaling inhibition. Biomed Pharmacother 121:109608

    Article  CAS  PubMed  Google Scholar 

  71. Yun CW, Kim HJ, Lim JH, Lee SH (2020) Heat shock proteins: agents of cancer development and therapeutic targets in anticancer therapy. Cells 9(1):60

    Article  CAS  Google Scholar 

  72. Ucar EO, Pekmez M, Arda N (2017) Targeting of heat shock proteins by natural products in cancer. In: Farooqi A, Ismail M (eds) Molecular oncology underlying mechanisms and translational advancements. Springer, Cham, pp 173–192

    Chapter  Google Scholar 

  73. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M (2016) Tumor-associated macrophages: potential therapeutic targets for anticancer therapy. Adv Drug Del Rev 99:180–185

    Article  CAS  Google Scholar 

  74. Liu H, Dong H, Jiang L, Li Z, Ma X (2018) Bleomycin inhibits proliferation and induces apoptosis in TPC-1 cells through reversing M2-macrophages polarization. Oncol Lett 16(3):3858–3866

    PubMed  PubMed Central  Google Scholar 

  75. Nathan J, Kannan RR (2020) Antiangiogenic molecules from marine actinomycetes and the importance of using zebrafish model in cancer research. Heliyon 6:e05662

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pantziarka P, Verbaanderd C, Huys I, Bouche G, Meheus L (2021) Repurposing drugs in oncology: from candidate selection to clinical adoption. Sem Cancer Biol 68:186–191

    Article  CAS  Google Scholar 

  77. Jarada TN, Rokne JG, Alhajj R (2020) A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J Cheminform 12:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xin H, Li J, Zhang H, Li Y, Zeng S, Wang Z et al (2019) Monensin may inhibit melanoma by regulating the selection between differentiation and stemness of melanoma stem cells. Peer J 7:e7354

    Article  PubMed  PubMed Central  Google Scholar 

  79. Abdel-Hamid NI, El-Azab MF, Moustafa YM (2017) Macrolide antibiotics differentially influence human HepG2 cytotoxicity and modulate intrinsic/extrinsic apoptotic pathways in rat hepatocellular carcinoma model. Naunyn-Schmiedeberg’s Arch Pharmacol 390:379–395

    Article  CAS  Google Scholar 

  80. Labay E, Mauceri HJ, Efimova EV, Flor AC, Sutton HG, Kron SJ et al (2016) Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers. Oncotarget 7(23):33919–33933

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pfab C, Schnobrich L, Eldnasoury S, Gessner A, El-Najjar N (2021) Repurposing of antimicrobial agents for cancer therapy: what do we know? Cancers 13:3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mbaba M, de la Mare JA, Sterrenberg JN, Kajewole D, Maharaj S, Edkins AL et al (2018) Novobiocin–ferrocene conjugates possessing anticancer and antiplasmodial activity independent of HSP90 inhibition. BMC Microbiol 24:139–149

    Google Scholar 

  83. Dlugosz A, Janecka A (2017) Novobiocin analogs as potential anticancer agents. Mini Rev Med Chem 17(9):728–733

    Article  CAS  PubMed  Google Scholar 

  84. Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J et al (2021) Repositioning of antiparasitic drugs for tumor treatment. Front Oncol 11:670804

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cheng M, Rizwan A, Jiang L, Bhujwalla ZM, Glunde K (2017) Molecular effects of Doxorubicin on choline metabolism in breast cancer. Neoplasia 19(8):617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Taherikalani M, Ghafourian S (2021) Anticancer properties of colicin E7 against colon cancer. Prz Gastroenterol 16(4):364–368

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yates KR, Welsh J, Udegbunam NO, Greenman J, Maraveyas A, Madden LA (2012) Duramycin exhibits antiproliferative properties and induces apoptosis in tumor cells. Blood Coagul Fibrinolysis 23(5):396–401

    Article  CAS  PubMed  Google Scholar 

  88. Baindara P, Gautam A, Raghava GPS, Korpole S (2017) Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep 7:46541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abdi-Ali A, Worobec EA, Deezagi A, Malekzadeh F (2004) Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines. Can J Microbiol 50(5):375–381

    Article  CAS  PubMed  Google Scholar 

  90. Hetz C, Bono MR, Barros LF, Lagos R (2002) Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Prc Acad Nat Sci USA 99(5):2696–2701

    Article  CAS  Google Scholar 

  91. Kumar B, Balgir PP, Kaur B, Mittu B, Chauhan A (2012) In vitro cytotoxicity of Native and Rec-Pediocin CP2 against cancer cell lines: a comparative study. Pharmaceut Anal Acta 3(8):183

    Article  CAS  Google Scholar 

  92. Villarante KI, Elegado FB, Iwatani S, Zendo T, Sonomoto K, de Guzman EE (2011) Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World J Microbiol Biotechnol 27:95–980

    Article  CAS  Google Scholar 

  93. Chen J, Barrett L, Lin Z, Kendrick S, Mu S, Dai L et al (2022) Identification of natural compounds tubercidin and lycorine HCl against small-cell lung cancer and BCAT1 as a therapeutic target. J Cell Mol Med 26(9):2557–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hofs HP, Wagener DJTH, De Vos D, Ottenheijm HCJ, Winkens HJ, Bovee PHM et al (1995) Antitumor activity and retinotoxicity of ethyldeshydroxy-sparsomycin in mice. Eur J Cancer 31(9):1526–1530

    Article  Google Scholar 

  95. Jia Z, Liu Y, Guan N, Bo X, Luo Z, Barnes MR (2016) Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery. BMC Genomics 17:414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Nagaraj AB, Wang QQ, Joseph P, Zheng C, Chen Y, Kovalenko O et al (2018) Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Oncogene 37:403–414

    Article  CAS  PubMed  Google Scholar 

  97. Saadat YR, Khosroushahi AY, Gargari BP (2019) A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohyd Polym 217:79–89

    Article  CAS  Google Scholar 

  98. Saravanakumar K, Shanmugam S, Varukattu NB, MubarakAli D, Kathiresan K, Wang MH (2019) Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol B 190:103–109

    Article  CAS  PubMed  Google Scholar 

  99. Ruiz-Torres V, Encinar JA, Herranz-Lopez M, Perez-Sanchez A, Galiano V, Barrajon-Catalan E et al (2017) An updated review on marine anticancer compounds: the use of virtual screening for the discovery of small-molecule cancer drugs. Molecules 22:1037

    Article  PubMed Central  CAS  Google Scholar 

  100. Panebianco C, Andriulli A, Pazienza V (2018) Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 6:92

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Pondicherry University, Central University of Kerela, and Mahatma Gandhi Central University for the support provided during the preparation for the manuscript. M.I. thanks to DBT-RA Program in Biotechnology & Life Sciences for the RA fellowship. SP thanks to DST-SERB-NPDF program, Govt. of India for the post-doctoral fellowship.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SP and MI contributed in preparing the draft of the manuscript and preparing the figures. RK, RP, and SB contributed in critically refining and revising the manuscript. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Ram Prasad or Siddhardha Busi.

Ethics declarations

Conflicts of interest

The authors hereby declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattnaik, S., Imchen, M., Kumavath, R. et al. Bioactive Microbial Metabolites in Cancer Therapeutics: Mining, Repurposing, and Their Molecular Targets. Curr Microbiol 79, 300 (2022). https://doi.org/10.1007/s00284-022-02990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02990-7

Navigation