Skip to main content

Advertisement

Log in

Complete Genome Sequencing Analysis of Deinococcus wulumuqiensis R12, an Extremely Radiation-Resistant Strain

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Genome sequencing was performed by the PacBio RS II platform and Illumina HiSeq 4000 platform to discover the metabolic profile of the Deinococcus wulumuqiensis R12, which was isolated from radiation-contaminated soils in Xinjiang Uygur Autonomous Region of northwest China. The genome of 3.5 Mbp comprises one circular chromosome and four circular plasmids with 3679 genes and a GC content of 66.97%. A total of 41 new transcriptional factors were identified using the DeepTFactor tool. Genomic analysis revealed the presence of genes for homologous recombination repair, which suggested high recombination efficiency in R12. Three Type I and one Type II RM systems, two CRISPR arrays, and one Cas-Type IC protein were found, allowing the development of endogenous CRISPR-Cas gene-editing tools. Additionally, we found that R12 has a broad spectrum of substrate utilization, which was validated by physiological experiments. Genes involved in the carotenoid biosynthesis pathway and the antioxidative system were also identified. Overall, the comprehensive description of the genome of R12 will facilitate the additional exploitation of this strain as a versatile cell factory for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3(11):882–892. https://doi.org/10.1038/nrmicro1264

    Article  CAS  PubMed  Google Scholar 

  2. Tian B, Hua YJ (2010) Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends Microbiol 18(11):512–520. https://doi.org/10.1016/j.tim.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  3. Blasius M, Sommer S, Hubscher U (2008) Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 43(3):221–238. https://doi.org/10.1080/10409230802122274

  4. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65(1):44–79. https://doi.org/10.1128/MMBR.65.1.44-79.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75(1):133–191. https://doi.org/10.1128/MMBR.00015-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qi H-z, Wang W-z, He J-y, Ma Y, Xiao F-z, He S-y (2020) Antioxidative system of Deinococcus radiodurans. Res Microbiol 171(2):45–54. https://doi.org/10.1016/j.resmic.2019.11.002

    Article  PubMed  Google Scholar 

  7. Choi JY, Lee K, Lee PC (2019) Characterization of carotenoid biosynthesis in newly Isolated Deinococcus sp. AJ005 and investigation of the effects of environmental conditions on cell growth and carotenoid biosynthesis. Mar Drugs 17(12):10. https://doi.org/10.3390/md17120705

    Article  CAS  Google Scholar 

  8. Jeong, SW, Kang, CK, Choi, YJ (2018) Metabolic engineering of Deinococcus radiodurans for the production of phytoene. J Microbiol Biotechnol. 28(10): 1691–1699. https://doi.org/10.4014/jmb.1808.08019

  9. Johnston CD, Skeete CA, Fomenkov A, Roberts RJ, Rittling SR (2017) Restriction-modification mediated barriers to exogenous DNA uptake and incorporation employed by Prevotella intermedia. PLoS One 12(9):30. https://doi.org/10.1371/journal.pone.0185234

    Article  CAS  Google Scholar 

  10. Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C, Zhang X (2020) CRISPR-based metabolic pathway engineering. Metab Eng. https://doi.org/10.1016/j.ymben.2020.10.004

    Article  PubMed  Google Scholar 

  11. Wang W, Mao J, Zhang Z, Tang Q, Xie Y, Zhu J, Zhang L, Liu Z, Shi Y, Goodfellow M (2010) Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., isolated from radiation-polluted soil. Int J Syst Evol Microbiol 60 (9):2006–2010. https://doi.org/10.1099/ijs.0.015917-0

  12. Xu X, Jiang L, Zhang Z, Shi Y, Huang H (2013) Genome sequence of a gamma- and UV-Ray-resistant strain, Deinococcus wulumuqiensis R12. Genome Announc 1(3):e00206-00213. https://doi.org/10.1128/genomeA.00206-13

    Article  PubMed  PubMed Central  Google Scholar 

  13. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679. https://doi.org/10.1093/bioinformatics/btm009

    Article  CAS  PubMed  Google Scholar 

  14. Chan PP, Lowe TM (2019) tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol 1962:1–14. https://doi.org/10.1007/978-1-4939-9173-0_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucl Acids Res 35(9):3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucl Acids Res 31(1):439–441. https://doi.org/10.1093/nar/gkg006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucl Acids Res 27(2):573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hasan MS, Liu Q, Wang H, Fazekas J, Chen B, Che D (2012) GIST: Genomic island suite of tools for predicting genomic islands in genomic sequences. Bioinformation 8(4):203–205. https://doi.org/10.6026/97320630008203

    Article  PubMed  PubMed Central  Google Scholar 

  19. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucl Acids Res 44(W1):W16–W21. https://doi.org/10.1093/nar/gkw387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roberts RJ, Vincze T, Posfai J, Macelis D (2014) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucl Acids Res 43(D1):D298–D299. https://doi.org/10.1093/nar/gku1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucl Acids Res 35 (suppl_2):W52–W57. https://doi.org/10.1093/nar/gkm360

  22. Kim GB, Gao Y, Palsson BO, Lee SY (2021) DeepTFactor: A deep learning-based tool for the prediction of transcription factors. Proc Natl Acad Sci USA 118(2):e2021171118. https://doi.org/10.1073/pnas.2021171118

    Article  CAS  PubMed  Google Scholar 

  23. Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29(2):231–262. https://doi.org/10.1016/j.femsre.2004.12.008

    Article  CAS  PubMed  Google Scholar 

  24. Clark DP, Pazdernik NJ (2013) Chapter e10—cell division and DNA replication. In: Clark DP, Pazdernik NJ (eds) Molecular biology (second edition). Academic Press, Boston, pp. e150-e158. https://doi.org/10.1016/B978-0-12-378594-7.00044-5

  25. Tanaka M, Narumi I, Funayama T, Kikuchi M, Watanabe H, Matsunaga T, Nikaido O, Yamamoto K (2005) Characterization of pathways dependent on the uvsE, uvrA1, or uvrA2 gene product for UV resistance in Deinococcus radiodurans. J Bacteriol 187(11):3693–3697. https://doi.org/10.1128/jb.187.11.3693-3697.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wigley DB (2013) Bacterial DNA repair: recent insights into the mechanism of RecBCD. AddAB and AdnAB Nat Rev Microbiol 11(1):9–13. https://doi.org/10.1038/nrmicro2917

    Article  CAS  PubMed  Google Scholar 

  27. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388. https://doi.org/10.1146/annurev.genet.36.061102.093104

    Article  CAS  PubMed  Google Scholar 

  28. Luan G, Cai Z, Gong F, Dong H, Lin Z, Zhang Y, Li Y (2013) Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system. Protein Cell 4(11):854–862. https://doi.org/10.1007/s13238-013-3079-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu C, Zhang J, Du G, Chen J (2013) Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Bioresour Technol 143:238–241. https://doi.org/10.1016/j.biortech.2013.05.050

    Article  CAS  PubMed  Google Scholar 

  30. Pleška M, Lang M, Refardt D, Levin BR, Guet CC (2018) Phage–host population dynamics promotes prophage acquisition in bacteria with innate immunity. Nat Ecol Evolut 2(2):359–366. https://doi.org/10.1038/s41559-017-0424-z

    Article  Google Scholar 

  31. Zhang J, Hong W, Guo L, Wang Y, Wang Y (2020) Enhancing plasmid transformation efficiency and enabling CRISPR-Cas9/Cpf1-based genome editing in Clostridium tyrobutyricum. Biotechnol Bioeng. https://doi.org/10.1002/bit.27435

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dupuis ME, Villion M, Magadán AH, Moineau S (2013) CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat Commun 4(1):1–7. https://doi.org/10.1038/ncomms3087

    Article  CAS  Google Scholar 

  33. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, Rocha EPC, Vergnaud G, Gautheret D, Pourcel C (2018) CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucl Acids Res 46(W1):W246-w251. https://doi.org/10.1093/nar/gky425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucl Acids Res 42(D1):D490–D495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  PubMed  Google Scholar 

  35. Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9(6):1101–1118. https://doi.org/10.3390/md9061101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ram S, Mitra M, Shah F, Tirkey SR, Mishra S (2020) Bacteria as an alternate biofactory for carotenoid production: a review of its applications, opportunities and challenges. J Funct Foods 67:13. https://doi.org/10.1016/j.jff.2020.103867

    Article  CAS  Google Scholar 

  37. Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7(3):237–245. https://doi.org/10.1038/nrmicro2073

    Article  CAS  PubMed  Google Scholar 

  38. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radical Biol Med 66:75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036

    Article  CAS  Google Scholar 

  39. Chandrangsu P, Loi VV, Antelmann H, Helmann JD (2018) The Role of bacillithiol in Gram-positive Firmicutes. Antioxid Redox Signal 28(6):445–462. https://doi.org/10.1089/ars.2017.7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Beijing Genomics Institute (BGI, Shenzhen, China) for help with genome sequencing.

Funding

This work was supported by The National Natural Science Foundation of China (31922070, 22008114), and The Natural Science Foundation of Jiangsu Province (BK20180038, BK20200684), and The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB530017).

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by LJ and the paper was written by ZMZ, bioinformatics analysis was performed by ZJD, the experiments were performed by ZJD, and ZDZ, and manuscript was critically revised by LJ, ZMZ, LYZ, ZJD, and ZDZ. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhengming Zhu or Ling Jiang.

Ethics declarations

Conflict of Interest

The authors declared that they have no conflict of interest to this work.

Ethical Approval

Not required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Zhang, Z., Zhu, L. et al. Complete Genome Sequencing Analysis of Deinococcus wulumuqiensis R12, an Extremely Radiation-Resistant Strain. Curr Microbiol 79, 292 (2022). https://doi.org/10.1007/s00284-022-02984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02984-5

Navigation