Skip to main content
Log in

Complete Genome Sequence of Lactobacillus salivarius AR809, a Probiotic Strain with Oropharyngeal Tract Resistance and Adhesion to the Oral Epithelial Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus salivarius AR809 was isolated from a healthy adult oral cavity with multiple probiotic properties, such as high antimicrobial activity, adhesion to the oral epithelium, resistance to acidic pH, bile, lysozyme, and H2O2. In this study, to investigate the genetic basis on probiotic potential and identify the functional genes in the strain, the complete genome of strain AR809 was sequenced by Illumina and PacBio platforms. Then comparative genome analysis on 11 strains of Lactobacillus salivarius was performed. The complete genome of AR809 consisted of a circular 1,747,224 bp chromosome with 33.00% GC content and four circular plasmids [pA (247,948 bp), pB (27,292 bp), pC (3349 bp), and pD (2898 bp), respectively]. From among the 1866 protein-coding genes, 130 carbohydrate metabolism-related genes, 18 bacteriocin biosynthesis-related genes, 74 environmental stress-related genes, and a series of adhesion-related genes were identified via clusters of orthologous genes, Koyto Encyclopedia of Genes and Genomes, and carbohydrate-active enzymes annotation. The comparative genome analysis indicated that genomic homology between AR809 and CICC23174 was the highest. In conclusion, the present work provided valuable insights into the gene’s function prediction and understanding the genetic basis on adapting to host oropharyngeal-gastrointestinal tract in strain AR809.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code Availability

Not applicable.

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rogosa M, Wiseman RF, Mitchell JA, Disraely MN, Beaman AJ (1953) Species differentiation of oral lactobacilli from man including description of Lactobacillus salivarius nov. spec. and Lactobacillus cellobiosus nov. spec. J Bacteriol 65(6):681–699. https://doi.org/10.1128/jb.65.6.681-699.1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhai Q, Shen X, Cen S, Zhang C, Tian F, Zhao J, Zhang H, Xue Y, Chen W (2020) Screening of Lactobacillus salivarius strains from the feces of Chinese populations and the evaluation of their effects against intestinal inflammation in mice. Food Funct 11(1):221–235. https://doi.org/10.1039/c9fo02116g

    Article  CAS  PubMed  Google Scholar 

  3. Raftis-Emma J, Salvetti E, Torriani S, Felis-Giovanna E, O’Toole-Paul W (2011) Genomic diversity of Lactobacillus salivarius. Appl Environ Microbiol 77(3):954–965. https://doi.org/10.1128/AEM.01687-10

    Article  CAS  Google Scholar 

  4. Fang F, Li Y, Bumann M, Raftis-Emma J, Casey-Pat G, Cooney-Jakki C, Walsh-Martin A, O’Toole-Paul W (2009) Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels. J Bacteriol 191(18):5743–5757. https://doi.org/10.1128/JB.00506-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van-Pijkeren JP, Canchaya C, Ryan-Kieran A, Li Y, Claesson-Marcus J, Sheil B, Steidler L, O’Mahony L, Fitzgerald-Gerald F, van-Sinderen D, W. O’Toole P (2006) Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72(6):4143–4153. https://doi.org/10.1128/AEM.03023-05

    Article  CAS  Google Scholar 

  6. Messaoudi S, Madi A, Prévost H, Feuilloley M, Manai M, Dousset X, Connil N (2012) In vitro evaluation of the probiotic potential of Lactobacillus salivarius SMXD51. Anaerobe 18(6):584–589. https://doi.org/10.1016/j.anaerobe.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  7. Ren DY, Li C, Qin YQ, Yin RL, Du SW, Ye F, Liu CX, Liu HF, Wang MP, Li Y, Sun Y, Li X, Tian MY, Jin NY (2014) In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe 30:1–10. https://doi.org/10.1016/j.anaerobe.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  8. Lee JY, Han GG, Kim EB, Choi YJ (2017) Comparative genomics of Lactobacillus salivarius strains focusing on their host adaptation. Microbiol Res 205:48–58. https://doi.org/10.1016/j.micres.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  9. Jia GC, Liu XF, Che N, Xia YJ, Wang GQ, Xiong ZQ, Zhang H, Ai LZ (2020) Human-origin Lactobacillus salivarius AR809 protects against immunosuppression in S. aureus-induced pharyngitis via Akt-mediated NF-kappa B and autophagy signaling pathways. Food Funct 11(1):270–284. https://doi.org/10.1039/C9FO02476J

    Article  CAS  PubMed  Google Scholar 

  10. Jia GC, Che N, Xia YJ, Lai PFH, Xiong ZQ, Wang GQ, Zhang H, Ai LZ (2019) Adhesion to pharyngeal epithelium and modulation of immune response: Lactobacillus salivarius AR809, a potential probiotic strain isolated from the human oral cavity. J Dairy Sci 102(8):6738–6749. https://doi.org/10.3168/jds.2018-16117

    Article  CAS  PubMed  Google Scholar 

  11. Si YY, Xu KH, Yu XY, Wang MF, Chen XH (2019) Complete genome sequence of Paracoccus denitrificans ATCC 19367 and its denitrification characteristics. Can J Microbiol 65(7):486–495. https://doi.org/10.1139/cjm-2019-0037

    Article  CAS  PubMed  Google Scholar 

  12. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27(5):722–736. https://doi.org/10.1101/gr.215087.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679. https://doi.org/10.1093/bioinformatics/btm009

    Article  CAS  PubMed  Google Scholar 

  14. Besemer J, Borodovsky M (2005) GeneMark. web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:451–454. https://doi.org/10.1093/nar/gki487

    Article  CAS  Google Scholar 

  15. Chan PP, Lowe TM (2019) tRNAscan-SE. Searching for tRNA genes in genomic sequences. In: Kollmar M (ed) Gene prediction. Methods in molecular biology. Humana, New York, pp 1–14. https://doi.org/10.1007/978-1-4939-9173-0_1

    Chapter  Google Scholar 

  16. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60. https://doi.org/10.1038/nmeth.3176

    Article  CAS  PubMed  Google Scholar 

  17. Yoon SH, Sm Ha, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 110(10):1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

  18. Li K, Liu J, Zeng Z, Kulyar F, Qi DJG (2020) The complete genome of probiotic Lactobacillus sakei derived from plateau yak feces. Genes 11(12):1527. https://doi.org/10.3390/genes11121527

    Article  CAS  PubMed Central  Google Scholar 

  19. Rodriguez-Valera F, Martin-Cuadrado AB, López-Pérez M (2016) Flexible genomic islands as drivers of genome evolution. Curr Opin Microbiol 31:154–160. https://doi.org/10.1016/j.mib.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  20. Novick RP (2013) Pathogenicity and other genomic islands. In: Maloy S (ed) Brenner’s encyclopedia of genetics, 2nd edn. Academic Press, San Diego, pp 240–242. https://doi.org/10.1016/B978-0-12-374984-0.01126-8

    Chapter  Google Scholar 

  21. Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:6091–6105. https://doi.org/10.1093/nar/gku241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Groisman EA (2016) Feedback control of two-component regulatory systems. Annu Rev Microbiol 70(1):103–124. https://doi.org/10.1146/annurev-micro-102215-095331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Azcarate-peril MA, Mcauliffe O, Altermann E, Lick S, Russell WM, Klaenhammer TR (2005) Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl Environ Microbiol 71(10):5794–5804. https://doi.org/10.1128/AEM.71.10.5794-5804.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pang XY, Liu CP, Lyu PC, Zhang SW, Liu L, Lu J, Changlu Ma CL, Lv JP (2016) Identification of quorum sensing signal molecule of Lactobacillus delbrueckii subsp. bulgaricus. J Agric Food Chem 28(6):1835–1841. https://doi.org/10.1021/acs.jafc.6b04016

    Article  CAS  Google Scholar 

  25. Monedero V, Revilla-Guarinos A, Zúñiga M (2017) Physiological role of two-component signal transduction systems in food-associated lactic acid bacteria. Adv Appl Microbiol 99:1. https://doi.org/10.1016/bs.aambs.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  26. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165–199. https://doi.org/10.1146/annurev.micro.55.1.165

    Article  CAS  PubMed  Google Scholar 

  27. Guo X, Chen J, Sun H, Luo L, Gu Y, Yi Y, Wang X, Shan Y, Liu B, Zhou Y, Lü X (2020) Mining, heterologous expression, purification and characterization of 14 novel bacteriocins from Lactobacillus rhamnosus LS-8. Int J Biol Macromol 164:2162–2176. https://doi.org/10.1016/j.ijbiomac.2020.08.067

    Article  CAS  PubMed  Google Scholar 

  28. Jia FF, Zhang LJ, Pang XH, Gu XX, Abdelazez A, Liang Y, Sun SR, Meng XC (2017) Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Genomics 109(5):432–437. https://doi.org/10.1016/j.ygeno.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  29. Liu CJ, Wang R, Gong FM, Liu XF, Zheng HJ, Luo YY, Li XR (2015) Complete genome sequences and comparative genome analysis of Lactobacillus plantarum strain 5-2 isolated from fermented soybean. Genomics 106(6):404–411. https://doi.org/10.1016/j.ygeno.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  30. Sánchez-Pascuala A, de Lorenzo V, Nikel PI (2017) Refactoring the embden–meyerhof–parnas pathway as a whole of portable glucobricks for implantation of glycolytic modules in Gram-negative bacteria. ACS Synth Biol 6(5):793–805. https://doi.org/10.1021/acssynbio.6b00230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema M, Lankhorst RMK, Bron PA, Hoffer SM, Groot MNN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. PNAS 100(4):1990–1995. https://doi.org/10.1073/pnas.0337704100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye K, Li P, Gu Q (2020) Complete genome sequence analysis of a strain Lactobacillus pentosus ZFM94 and its probiotic characteristics. Genomics 112(5):3142–3149. https://doi.org/10.1016/j.ygeno.2020.05.015

    Article  CAS  PubMed  Google Scholar 

  33. Bhattacharya T, Ghosh TS, Mande SS (2015) Global profiling of carbohydrate active enzymes in human gut microbiome. PLoS ONE 10(11):e0142038. https://doi.org/10.1371/journal.pone.0142038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hervé T, Karen EN, Ian TP, Jonathan AE, Timothy DR, Scott P, John H, Robert TD, Daniel HH, Robert JD et al (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293(5529):498–506. https://doi.org/10.1126/science.1061217

    Article  Google Scholar 

  35. Chen DW, Chen CM, Qu HX, Ren CY, Yan XT, Huang YJ, Guan CR, Zhang CC, Li QM, Gu RX (2021) Screening of Lactobacillus strains that enhance SCFA uptake in intestinal epithelial cells. Eur Food Res Technol 247(5):1049–1060. https://doi.org/10.1007/s00217-021-03686-1

    Article  CAS  Google Scholar 

  36. Fu L (2008) Study on the respiration of Lactococcus lactis. Master. Northeast Agricultural University, Harbin (In Chinese)

    Google Scholar 

  37. Zhang WY, Guo HL, Cao CX, Li LN, Kwok LY, Zhang HP, Sun ZH (2017) Adaptation of Lactobacillus casei Zhang to gentamycin involves an alkaline shock protein. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02316

    Article  PubMed  PubMed Central  Google Scholar 

  38. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. BBA-Rev Biomembr 1717(2):67–88. https://doi.org/10.1016/j.bbamem.2005.09.010

    Article  CAS  Google Scholar 

  39. Kazou M, Alexandraki V, Blom J, Pot B, Tsakalidou E, Papadimitriou K (2018) Comparative genomics of Lactobacillus acidipiscis ACA-DC 1533 isolated from traditional greek kopanisti cheese against species within the Lactobacillus salivarius clade. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01244

    Article  PubMed  PubMed Central  Google Scholar 

  40. Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL (2006) GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol 188(23):8044–8053. https://doi.org/10.1128/JB.00824-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Derzelle S, Hallet B, Francis-Kevin P, Ferain T, Delcour J, Hols P (2000) Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. J Bacteriol 182(18):5105–5113. https://doi.org/10.1128/JB.182.18.5105-5113.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rojas M, Ascencio F, Conway-Patricia L (2002) Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 68(5):2330–2336. https://doi.org/10.1128/AEM.68.5.2330-2336.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA (2010) The extracellular biology of the Lactobacilli. FEMS Microbiol Rev 34(2):199–230. https://doi.org/10.1111/j.1574-6976.2009.00208.x

    Article  CAS  PubMed  Google Scholar 

  44. Becker P, Hufnagle W, Peters G, Herrmann M (2001) Detection of differential gene expression in biofilm-forming versus planktonic populations of Staphylococcus aureus using micro-representational-difference analysis. Appl Environ Microbiol 67(7):2958–2965. https://doi.org/10.1128/AEM.67.7.2958-2965.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramiah K, van Reenen CA, Dicks LMT (2008) Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis. Res Microbiol 159(6):470–475. https://doi.org/10.1016/j.resmic.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  46. Waśko A, Polak-Berecka M, Paduch R, Jóźwiak K (2014) The effect of moonlighting proteins on the adhesion and aggregation ability of Lactobacillus helveticus. Anaerobe 30:161–168. https://doi.org/10.1016/j.anaerobe.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  47. Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthésy-Theulaz IE (2006) GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74(1):425–434. https://doi.org/10.1128/IAI.74.1.425-434.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Candela M, Centanni M, Fiori J, Biagi E, Turroni S, Orrico C, Bergmann S, Hammerschmidt S, Brigidi P (2010) DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology 156:1609–1618. https://doi.org/10.1099/mic.0.038307-0

    Article  CAS  PubMed  Google Scholar 

  49. Kainulainen V, Loimaranta V, Pekkala A, Edelman S, Antikainen J, Kylväjä R, Laaksonen M, Laakkonen L, Finne J, Korhonen TK (2012) Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37. J Bacteriol 194(10):2509–2519. https://doi.org/10.1128/JB.06704-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. García-Ruiz A, González de Llano D, Esteban-Fernández A, Requena T, Bartolomé B, Moreno-Arribas MV (2014) Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol 44:220–225. https://doi.org/10.1016/j.fm.2014.06.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Otolaryngology, Tongji Hospital of Tongji University, for its efforts in the preliminary work.

Funding

This work was supported by the Project of Shanghai for Agriculture Advance by Science and Technology (2022-02-08-00-12-F01102), National Science Fund for Distinguished Young Scholars of China (No.32025029), the Shanghai Agriculture Applied Technology Development Program of China (2019-02-08-00-07-F01152).

Author information

Authors and Affiliations

Authors

Contributions

YY and XS contributed equally to this work. YY and XS conceived and wrote the draft manuscript. ZX, YX, and GW edited the manuscript. LA supervised the project.

Corresponding author

Correspondence to Lianzhong Ai.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Ethical Approval

This study was approved by the Ethics Committee of Tongji Hospital (KYSB-2016-97).

Consent to Participate

This study involved oral sampling from healthy individual. Participants provided their verbal informed consent for oral environment sampling. And all the authors read and approved the final manuscript.

Consent for Publication

All the authors gave their consent to the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 141 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Song, X., Xiong, Z. et al. Complete Genome Sequence of Lactobacillus salivarius AR809, a Probiotic Strain with Oropharyngeal Tract Resistance and Adhesion to the Oral Epithelial Cells. Curr Microbiol 79, 280 (2022). https://doi.org/10.1007/s00284-022-02963-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02963-w

Navigation