Skip to main content
Log in

Molecular Characterization of Native Bacillus thuringiensis Strains from Root Nodules with Toxicity Against the Fall Armyworm (FAW, Spodoptera frugiperda) and Brinjal Ash Weevil (Myllocerus subfasciatus)

  • Published:
Current Microbiology Aims and scope Submit manuscript

This article has been updated

Abstract

The fall armyworm is an exotic pest which destroys a wide variety of crops whereas the brinjal ash weevil is a serious pest of eggplant and other solanaceous vegetables. The goal of this research is to find a sustainable and ecologically friendly bio-control agent for managing FAW and brinjal ash weevils. Twelve natural Bacillus thuringiensis strains were isolated from cowpea root nodules, and the Gram-positive cells with characteristic Bt crystal structures were discovered using phase contrast and scanning electron microscopy. There were bipyramidal, cuboidal, rhombus, and spherical crystals. The Bt cry gene content was characterized by PCR analysis, which revealed the presence of cry1, cry1I, cry3, cry7, cry7,8, cry14, cry26, and cry55 genes. The identity of Bt was confirmed by cloning and sequencing the cry genes. In the nucleotide sequences, no pseudo genes or indels were found in cry sequences. SDS-PAGE examination indicated the presence of bands ranging in size from 13 to 130 kDa, with 50–60 kDa being the most common. When compared to the control, the new native Bt strains were lethal, with pathogenicity ranging from 93 to 100% against S. frugiperda larvae and M. subfasciatus adults. The studies revealed that the native strains with conserved regions of 16S rRNA genes were compared to NCBI database sequences and classified as native Bt strains with 99–100% similarity to known Bt strains. In conclusion, native Bt strains from cowpea root nodules were shown to have bio-insecticidal activity against fall armyworm larvae and brinjal ash weevil adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 13 August 2022

    The word "Query" is removed from the first sentence of the abstract section.

References

  1. Reavey CE, Walker AS, Joyce SP, Broom L, Willse A, Ercit K, Poletto M, Barnes ZH, Marubbi T, Troczka BJ, Treanor D (2022) Self-limiting fall armyworm: a new approach in development for sustainable crop protection and resistance management. BMC Biotechnol 22(1):1–6. https://doi.org/10.1186/s12896-022-00735-9

    Article  CAS  Google Scholar 

  2. Swamy HM, Asokan R, Kalleshwaraswamy CM, Sharanabasappa D, Prasad YG, Maruthi MS, Shashank PR, Ibemu devi N, Surakasula A, Adarsha S, Srinivas A, Rao S, Vidyasekhar, Shali RM, Shyam sunder reddy G, Nagesh SN (2018) Prevalence of “R” strain and molecular diversity of fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in India. Indian J Entomol 80(3):544–553. https://doi.org/10.5958/0974-8172.2018.00239.0

    Article  Google Scholar 

  3. CABI (2022) Spodoptera frugiperda (fall armyworm). Invasive Species Compendium. CABI, Wallingford. https://doi.org/10.1079/ISC.29810.20203373913

    Book  Google Scholar 

  4. Fernandez-chapa D, Ramirez-villlalobos J, Galan-wong L (2019) Toxic potential of Bacillus thuringiensis : an overview. Prot Rice Grains Post-Genomic Era. https://doi.org/10.5772/intechopen.85756

    Article  Google Scholar 

  5. De maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433. https://doi.org/10.1146/annurev.genet.37.110801.143042

    Article  CAS  PubMed  Google Scholar 

  6. De maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199. https://doi.org/10.1016/s0168-9525(01)02237-5

    Article  CAS  PubMed  Google Scholar 

  7. Mahadeva Swamy HM, Asokan R, Arora DK, Nagesha SN, Ajanta B, Riaz M (2011) Cloning, characterization and diversity of insecticidal crystal protein genes of Bacillus thuringiensis native isolates from soils of Andaman and Nicobar Islands. Curr Microbiol 63:420–425. https://doi.org/10.1007/s00284-012-0273-6

    Article  CAS  PubMed  Google Scholar 

  8. Krieg A, Langenbruch GA (1981) Susceptibility of arthropod species to Bacillus thuringiensis. In: Burges HD (ed) Microbial control of pests and plant diseases. Academic PressLondon 837–896.

  9. Schnepf E, Crickmore NV, Van rie J, Lereclus D, Baum J, Feitelson J, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806. https://doi.org/10.1128/mmbr.62.3.775-806.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crickmore N, Zeigler DR, Schnepf E, Van rie J, Lereclus D, Baum J, Bravo A, Dean DH (2022) Bacillus thuringiensis toxin nomenclature. Available at http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/toxins2.html

  11. Travers RS, Martin PAW, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus sp. Appl Environ Microbiol 53:1263–1266. https://doi.org/10.1128/aem.53.6.1263-1266.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Padole DA, Moharil MP, Ingle KP, Munje S (2017) Isolation and characterization of native isolates of Bacillus thuringiensis from Vidarbha Region. Int J Curr Microbiol App Sci 6:798–806. https://doi.org/10.20546/IJCMAS.2017.601.094

    Article  Google Scholar 

  13. Ferrandis MD, Jua’rez-pe’rez VM, Frutos R, Bel Y, Ferre J, (1999) Distribution of cryI, cryII and cryV genes within Bacillus thuringiensis isolates from Spain. Syst Appl Microbiol 22:179–185

    Article  CAS  Google Scholar 

  14. Miniatis T (1989) In vitro amplification of DNA by a polymerase chain reaction. In: Sambrook J, Fritsch EF (eds) Molecular cloning—a laboratory manual. Laboratory Press USA, Cold Spring Harbour, pp 5–14

    Google Scholar 

  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  16. Kronstad JW, Schnepf HE, Whiteley HR (1983) Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol 154:419–428. https://doi.org/10.1128/jb.154.1.419-428.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raymond B, Lijek RS, Griffiths RI (2008) Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. J Invert Pathol 99:103–111. https://doi.org/10.1016/j.jip.2008.04.007

    Article  CAS  Google Scholar 

  18. Ryan RP, Germaine K, Fanks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

    Article  CAS  PubMed  Google Scholar 

  19. Bai Y, D’aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238. https://doi.org/10.1139/w02-014

    Article  CAS  PubMed  Google Scholar 

  20. Selvakumar G, Kundu S, Gupta AD, Shouche YS, Gupta HS (2008) Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol 56:134–139. https://doi.org/10.1007/s00284-007-9062-z

    Article  CAS  PubMed  Google Scholar 

  21. Tanuja, Bisht SC, Mishra PK (2013) Ascending migration of endophytic Bacillus thuringiensis and assessment of benefits to different legumes of N.W. Himalayas. European J Soil Biol 56:56–64. https://doi.org/10.1016/j.ejsobi.2013.02.004

    Article  Google Scholar 

  22. Mishra PK, Bisht SC, Ruwari P, Subbanna ARNS, Bisht JK, Bhatt JC, Gupta HS (2017) Genetic diversity and functional characterization of endophytic Bacillus thuringiensis isolates from the North Western Indian Himalayas. Ann Microbiol 67:143–155. https://doi.org/10.1007/s13213-016-1244-0

    Article  CAS  Google Scholar 

  23. Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250(251):477–483. https://doi.org/10.1016/j.jhazmat.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  24. Seo S, Lee S, Hong Y, Kim Y (2012) Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl Environ Microbiol 78:3816–3823. https://doi.org/10.1128/AEM.00301-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin Y, Xu S, Zeng D, Ni X, Zhou M, Zeng Y (2017) Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. PLoS ONE 12(8):e0182426. https://doi.org/10.1371/journal.pone.0182426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tao A, Pang F, Huang S, Yu G, Li B, Wang T (2014) Characterisation of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Sci Technol 24(8):901–924. https://doi.org/10.1080/09583157.2014.904502

    Article  Google Scholar 

  27. Mcinroy JA, Kloepper JW (1995) Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can J Microbiol 41:895–901. https://doi.org/10.1139/m95-123

    Article  CAS  Google Scholar 

  28. Mcinroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342. https://doi.org/10.1007/BF00011472

    Article  CAS  Google Scholar 

  29. Monnerat RG (2009) Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants. Microbial Biotechnol 2(4):512–520. https://doi.org/10.1111/j.1751-7915.2009.00116.x

    Article  CAS  Google Scholar 

  30. Miguel PSB, Delvaux JC, De oliveira MNV, Monteiro LCP, Costa MD, Totola MR, Borges AC (2013) Diversity of endophytic bacteria in the fruits of Coffea canephora. Afr J Microbiol Res 7(7):586–594. https://doi.org/10.5897/AJMR12.2036

    Article  Google Scholar 

  31. Hong Z, Chen W, Rong X, Cai P, Tan W, Huang Q (2015) Effects of humic acid on adhesion of Bacillus subtilis to phyllosilicates and goethite. Chem Geol 416:19–27. https://doi.org/10.1016/j.chemgeo.2015.10.017

    Article  CAS  Google Scholar 

  32. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction by systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11. https://doi.org/10.1016/S0261-2194(00)00056-9

    Article  CAS  Google Scholar 

  33. Crickmore N, Zeigler DR, Schnepf E, Van rie J, Lereclus D, Baum J, Bravo A, Dean DH (2011) Bacillus thuringiensis toxin nomenclature. Available at http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/index.html.

  34. Rampersad J, Ammons D (2002) Usefulness of staining parasporal bodies when screening for Bacillus thuringiensis. J Invertebr Pathol 79:203–204. https://doi.org/10.1016/s0022-2011(02)00018-6

    Article  PubMed  Google Scholar 

  35. Ibrahim MA, Griko N, Junker M, Bulla LA (2010) A genomics and proteomics perspective. Bioenginer Bugs 1:31–50. https://doi.org/10.4161/bbug.1.1.10519

    Article  Google Scholar 

  36. Gonzalez JM Jr., Brown BJ, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for—endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci USA 79:6951–6955

    Article  CAS  Google Scholar 

  37. Aptosoglou SG, Sivropoulou A, Koliais SI (1997) Distribution and characterization of Bacillus thuringiensis in the environment of the olive in Greece. New Microbiol 20:69–76

    CAS  PubMed  Google Scholar 

  38. Gonzalez JM Jr., Carlton BC (1980) Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3:92–98. https://doi.org/10.1016/s0147-619x(80)90038-4

    Article  CAS  PubMed  Google Scholar 

  39. Carozzi NB, Kramer VC, Warren GW, Evola S, Koziel MG (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl Environ Microbiol 57:3057–3061. https://doi.org/10.1128/aem.57.11.3057-3061.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Noguera PA, Ibarra JE (2010) Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Appl Environ Microbiol 76:6150–6155. https://doi.org/10.1128/AEM.00797-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto AB (2000) Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630. https://doi.org/10.1128/AEM.66.6.2627-2630.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaelin P, Gadani F (2000) Occurrence of Bacillus thuringiensis of cured tobacco leaves. Curr Microbiol 40:205–209. https://doi.org/10.1007/s002849910041

    Article  CAS  PubMed  Google Scholar 

  43. Bietlot HP, Schernthaner JP, Milne RE, Clairmont FR, Bhella RS, Kaplan H (1993) Evidence that the CryIA crystal protein from Bacillus thuringiensis is associated with DNA. J Biol Chem 268(11):8240–8245. https://doi.org/10.1016/S0021-9258(18)53087-8

    Article  CAS  PubMed  Google Scholar 

  44. Ramasubramanian T, Regupathy A (2004) Pattern of cross-resistance in pyrethroid-selected populations of Helicoverpa armigera Hübner (Lep., Noctuidae) from India. J Appl Entomol 128:583–587. https://doi.org/10.1111/j.1439-0418.2004.00897.x

    Article  CAS  Google Scholar 

  45. Ramasubramanian T, Regupathy A (2004) Magnitude and mechanism of insecticide resistance in Helicoverpa armigera hub. population of Tamil Nadu. India Asian J Plant Sci 3:94–100. https://doi.org/10.3923/ajps.2004.94.100

    Article  Google Scholar 

  46. Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Llina L, Villalobos V, Pena G, Nunez-valdez M, Soberon M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972. https://doi.org/10.1128/aem.64.12.4965-4972.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li H, Bouwer G (2012) Toxicity of Bacillus thuringiensis Cry proteins to Helicoverpa armigera (Lepidoptera: Noctuidae) in South Africa. J Invertebr Pathol 109(1):110–116. https://doi.org/10.1016/j.jip.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  48. Rang C, Lacey LA, Frutos R (2000) The crystal proteins from Bacillus thuringiensis subsp. thompsoni display a synergistic activity against the codling moth Cydia pomonella Curr. Microbial 40:200–204. https://doi.org/10.1007/s002849910040

    Article  CAS  Google Scholar 

  49. Haggag KH, Abou yousef HM (2010) Differentiation among Egyptian Bacillus thuringiensis strains at sporulation by whole cellular protein profiles. World J Agric Sci 6:24–233

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Director, Indian Institute of Horticultural Research (IIHR) for providing the encouragement and technical support to carry out the research. The authors would like to express their gratitude to various anonymous referees for their helpful recommendations and remarks.

Author information

Authors and Affiliations

Authors

Contributions

The experiments for the physiological and molecular characterization of Bt strains were devised and carried out by AD, SNN, RA, and HMMS. AD collected environmental samples in the outdoors, conducted bioassay studies, and analyzed the results statistically. For Bt isolation, identification, and mass propagation, RA provided the facilities, culture medium, basic chemicals, solvents, and reagents. All authors contributed to the manuscript preparation for publication and approved the final version.

Corresponding author

Correspondence to Nagesha Somakalapalli Narasimhappa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4177 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delanthabettu, A., Narasimhappa, N.S., Ramaswamy, A. et al. Molecular Characterization of Native Bacillus thuringiensis Strains from Root Nodules with Toxicity Against the Fall Armyworm (FAW, Spodoptera frugiperda) and Brinjal Ash Weevil (Myllocerus subfasciatus). Curr Microbiol 79, 274 (2022). https://doi.org/10.1007/s00284-022-02951-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02951-0

Navigation