Skip to main content
Log in

Isolation and Characterization of Novel Lytic Bacteriophage vB_RsoP_BMB50 infecting Ralstonia solanacearum

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Ralstonia solanacearum is a soil-borne phytopathogen, and it can cause bacterial wilt disease in a variety of key crops around the world, thus resulting in enormous financial losses. However, there is a lack of effective, green, and safe prevention and control measures against increasingly devastating bacterial wilt disease. Bacteriophages (phages) are considered as potential biocontrol agents against bacterial wilt disease. Although many phages infecting R. solanacearum have been isolated, so far, these Ralstonia phages are still insufficient to deal with the diversity of the bacteria of R. solanacearum. In this study, a novel lytic bacteriophage vB_RsoP_BMB50 infecting multiple R. solanacearum was isolated from tomato fields in Dalian, China. Transmission electron microscopy and genomics analysis indicated that vB_RsoP_BMB50 belonged to the subfamily Okabevirinae, Autographiviridae family, and order Caudovirales, and it comprised a double-stranded DNA with a full length of 43,665 bp and a mean G+C content of 61.79%, containing 53 open reading frames (ORFs). This novel phage exhibited a large burst size, high temperature stability (4–50 °C), and strong pH tolerance (pH 5–10). Comparative analyses and phylogenetic analyses revealed that vB_RsoP_BMB50 represented a novel Ralstonia phage genus since it exhibited a low sequence similarity to other phages in the GenBank database. Due to its broad lytic spectrum, high thermal stability, and strong pH tolerance, vB_RsoP_BMB50 is considered as an effective candidate biocontrol agent against bacterial wilt disease caused by R. solanacearum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The complete genome sequence of phage vB_RsoP_BMB50 was deposited in the GenBank database under the accession number MW965453.

Code Availability

Not applicable.

References

  1. Peeters N, Guidot A, Vailleau F, Valls M (2013) Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol 14:651–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89

    Article  CAS  PubMed  Google Scholar 

  3. Abdurahman A, Parker ML, Kreuze J, Elphinstone JG, Struik PC, Kigundu A, Arengo E, Sharma K (2019) Molecular epidemiology of Ralstonia solanacearum species complex strains causing bacterial wilt of potato in Uganda. Phytopathology 109:1922–1931

    Article  CAS  PubMed  Google Scholar 

  4. Prior P, Ailloud F, Dalsing BL, Remenant B, Sanchez B, Allen C (2016) Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics 17:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paudel S, Dobhal S, Alvarez AM, Arif M (2020) Taxonomy and phylogenetic research on Ralstonia solanacearum species complex: a complex pathogen with extraordinary economic consequences. Pathogens 9:1

    Article  CAS  Google Scholar 

  7. Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, Macho AP, Ding W, Liao B (2017) Bacterial wilt in China: history, current status, and future perspectives. Front Plant Sci 8:1549

    Article  PubMed  PubMed Central  Google Scholar 

  8. Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N (2017) A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9:1

    Article  CAS  Google Scholar 

  9. Alvarez B, Lopez MM, Biosca EG (2019) Biocontrol of the major plant pathogen Ralstonia solanacearum in irrigation water and host plants by novel waterborne lytic bacteriophages. Front Microbiol 10:2813

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Wei Z, Yang K, Wang J, Jousset A, Xu Y, Shen Q, Friman VP (2019) Phage combination therapies for bacterial wilt disease in tomato. Nat Biotechnol 37:1513–1520

    Article  CAS  PubMed  Google Scholar 

  11. Trotereau A, Boyer C, Bornard I, Pecheur MJB, Schouler C, Torres-Barcelo C (2021) High genomic diversity of novel phages infecting the plant pathogen Ralstonia solanacearum, isolated in Mauritius and Reunion islands. Sci Rep 11:5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alvarez B, Biosca EG (2017) Bacteriophage-based bacterial wilt biocontrol for an environmentally sustainable agriculture. Front Plant Sci 8:1218

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fegan M, Prior P (2005) How complex is the Ralstonia solanacearum species complex. Bacterial wilt disease and the Ralstonia solanacearum species complex 1:449–461

    Google Scholar 

  14. Van Twest R, Kropinski AM (2009) Bacteriophage enrichment from water and soil. Methods Mol Biol 501:15–21

    Article  PubMed  CAS  Google Scholar 

  15. Hyman P, Abedon ST (2009) Practical methods for determining phage growth parameters. Methods Mol Biol 501:175–202

    Article  CAS  PubMed  Google Scholar 

  16. Wang M, Du J, Zhang D, Li X, Zhao J (2017) Modification of different pulps by homologous overexpression alkali-tolerant endoglucanase in Bacillus subtilis Y106. Sci Rep 7:3321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Santos MA (1991) An improved method for the small scale preparation of bacteriophage DNA based on phage precipitation by zinc chloride. Nucleic Acids Res 19:5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL et al (2017) ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 27:768–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moraru C, Varsani A, Kropinski AM (2020) VIRIDIC-A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 12:1

    Article  CAS  Google Scholar 

  23. Dong Z, Xing S, Liu J, Tang X, Ruan L, Sun M, Tong Y, Peng D (2018) Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae. J Gen Virol 99:1453–1462

    Article  CAS  PubMed  Google Scholar 

  24. Kawasaki T, Shimizu M, Satsuma H, Fujiwara A, Fujie M, Usami S, Yamada T (2009) Genomic characterization of Ralstonia solanacearum phage phiRSB1, a T7-like wide-host-range phage. J Bacteriol 191:422–427

    Article  CAS  PubMed  Google Scholar 

  25. Yamada T, Satoh S, Ishikawa H, Fujiwara A, Kawasaki T, Fujie M, Ogata H (2010) A jumbo phage infecting the phytopathogen Ralstonia solanacearum defines a new lineage of the Myoviridae family. Virology 398:135–147

    Article  CAS  PubMed  Google Scholar 

  26. Wang R, Cong Y, Mi Z, Fan H, Shi T, Liu H, Tong Y (2019) Characterization and complete genome sequence analysis of phage GP4, a novel lytic Bcep22-like podovirus. Arch Virol 164:2339–2343

    Article  CAS  PubMed  Google Scholar 

  27. Addy HS, Ahmad AA, Huang Q (2019) Molecular and biological characterization of Ralstonia phage RsoM1USA, a new species of P2virus, isolated in the United States. Front Microbiol 10:267

    Article  PubMed  PubMed Central  Google Scholar 

  28. Van Truong TB, Pham Khanh NH, Namikawa R, Miki K, Kondo A, Dang Thi PT, Kamei K (2016) Genomic characterization of Ralstonia solanacearum phage varphiRS138 of the family Siphoviridae. Arch Virol 161:483–486

    Article  CAS  Google Scholar 

  29. Bhunchoth A, Blanc-Mathieu R, Mihara T, Nishimura Y, Askora A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kawasaki T, Nakano M et al (2016) Two asian jumbo phages, varphiRSL2 and varphiRSF1, infect Ralstonia solanacearum and show common features of varphiKZ-related phages. Virology 494:56–66

    Article  CAS  PubMed  Google Scholar 

  30. Matsui T, Yoshikawa G, Mihara T, Chatchawankanphanich O, Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T (2017) Replications of two closely related groups of jumbo phages show different level of dependence on host-encoded RNA polymerase. Front Microbiol 8:1010

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ahmad AA, Addy HS, Huang Q (2021) Biological and molecular characterization of a jumbo bacteriophage infecting plant pathogenic Ralstonia solanacearum species complex strains. Front Microbiol 12:741600

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kawasaki T, Narulita E, Matsunami M, Ishikawa H, Shimizu M, Fujie M, Bhunchoth A, Phironrit N, Chatchawankanphanich O, Yamada T (2016) Genomic diversity of large-plaque-forming podoviruses infecting the phytopathogen Ralstonia solanacearum. Virology 492:73–81

    Article  CAS  PubMed  Google Scholar 

  33. Drigues P, Demery-Lafforgue D, Trigalet A, Dupin P, Samain D, Asselineau J (1985) Comparative studies of lipopolysaccharide and exopolysaccharide from a virulent strain of Pseudomonas solanacearum and from three avirulent mutants. J Bacteriol 162:504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen D, Liu B, Zhu Y, Wang J, Chen Z, Che J, Zheng X, Chen X (2017) Complete genome sequence of Ralstonia solanacearum FJAT-1458, a potential biocontrol agent for Tomato Wilt. Genome Announc 5:1

    Google Scholar 

  35. Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJE, Lavigne R, Dutilh BE, Brouns SJJ (2018) Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol 16:760–773

    Article  CAS  PubMed  Google Scholar 

  36. Mamphogoro TP, Babalola OO, Aiyegoro OA (2020) Sustainable management strategies for bacterial wilt of sweet peppers (Capsicum annuum) and other Solanaceous crops. J Appl Microbiol 129:496–508

    Article  CAS  PubMed  Google Scholar 

  37. Yuliar NYA, Toyota K (2015) Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ 30(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buttimer C, McAuliffe O, Ross RP, Hill C, O’Mahony J, Coffey A (2017) Bacteriophages and bacterial plant diseases. Front Microbiol 8:34

    PubMed  PubMed Central  Google Scholar 

  39. Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M, Yamada T (2011) Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77:4155–4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bae JY, Wu J, Lee HJ, Jo EJ, Murugaiyan S, Chung E, Lee SW (2012) Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J Microbiol Biotechnol 22:1613–1620

    Article  PubMed  Google Scholar 

  41. Bhunchoth A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kotera S, Narulita E, Kawasaki T, Fujie M, Yamada T (2015) Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. J Appl Microbiol 118:1023–1033

    Article  CAS  PubMed  Google Scholar 

  42. de Leeuw M, Baron M, Ben David O, Kushmaro A (2020) Molecular insights into bacteriophage evolution toward its host. Viruses 12:1

    Article  CAS  Google Scholar 

  43. Sieiro C, Areal-Hermida L, Pichardo-Gallardo A, Almuina-Gonzalez R, de Miguel T, Sanchez S, Sanchez-Perez A, Villa TG (2020) A hundred years of bacteriophages: can phages replace antibiotics in agriculture and aquaculture? Antibiotics (Basel) 9:1

    Google Scholar 

  44. Hong Y, Schmidt K, Marks D, Hatter S, Marshall A, Albino L, Ebner P (2016) Treatment of salmonella-contaminated eggs and pork with a broad-spectrum, single bacteriophage: assessment of efficacy and resistance development. Foodborne Pathog Dis 13:679–688

    Article  CAS  PubMed  Google Scholar 

  45. Wang C, Chen Q, Zhang C, Yang J, Lu Z, Lu F, Bie X (2017) Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat. Virus Res 236:14–23

    Article  CAS  PubMed  Google Scholar 

  46. Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, Hu F, Jiang X, Jiao W (2019) A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environ Int 129:488–496

    Article  CAS  PubMed  Google Scholar 

  47. Ma Y, Li E, Qi Z, Li H, Wei X, Lin W, Zhao R, Jiang A, Yang H, Yin Z et al (2016) Isolation and molecular characterisation of Achromobacter phage phiAxp-3, an N4-like bacteriophage. Sci Rep 6:24776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leon-Velarde CG, Happonen L, Pajunen M, Leskinen K, Kropinski AM, Mattinen L, Rajtor M, Zur J, Smith D, Chen S et al (2016) Yersinia enterocolitica-specific infection by bacteriophages TG1 and varphiR1-RT is dependent on temperature-regulated expression of the phage host receptor OmpF. Appl Environ Microbiol 82:5340–5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 4:201–219

    Article  CAS  PubMed  Google Scholar 

  50. Skurnik M, Pajunen M, Kiljunen S (2007) Biotechnological challenges of phage therapy. Biotechnol Lett 29:995–1003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Bo Liu (Fujian Academy of Agriculture Sciences) for donating R. solanacearum strains.

Funding

This study was supported by grants from the National Natural Science Foundation of China (31970075 and 31370002).

Author information

Authors and Affiliations

Authors

Contributions

MS and DP conceived the project, DP designed the experiments. KW and QL performed the experiments. DC and PZ analyzed the data. KW wrote the manuscript. DP revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Donghai Peng.

Ethics declarations

Conflict of interest

All the authors declared that there are no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Informed Consent

The authors grant the publisher consent to publish the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Chen, D., Liu, Q. et al. Isolation and Characterization of Novel Lytic Bacteriophage vB_RsoP_BMB50 infecting Ralstonia solanacearum. Curr Microbiol 79, 245 (2022). https://doi.org/10.1007/s00284-022-02940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02940-3

Navigation