Skip to main content

Advertisement

Log in

Antimicrobial Activities of Salacia oblonga Wall Leaf and Root Extracts Against Different Bacterial Strains and Fungal Isolates

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antibiotic resistance and the hazardous nature of synthetic drugs is threatening issue in the health sector. The alternative for this problem is to focus on plants that attribute to various compounds that exhibit therapeutic properties. Therefore, the study aims to evaluate the antimicrobial efficacy of Salacia oblonga leaf and root extracts against tested human pathogens. The S. oblonga extracts showed a significant zone of inhibition against bacteria and fungi. The leaf and root extracts of S. oblonga are prepared using low polar to high polar solvents in the Soxhlet apparatus and tested on the selected bacterial and fungal strains. Agar well diffusion and broth dilution methods evaluate antibacterial activity, antifungal activity, and Minimum Inhibitory Concentration (MIC) of extracts. Among the extracts tested, the ethyl acetate extract of root showed more antimicrobial activity against the tested bacterial and fungal strains. The most susceptible bacterial and fungal species against ethyl acetate extract are Micrococcus luteus, Mycobacterium tuberculosis, Microsporum canis, Trichophyton interdigitale, and Microsporum gypseum. The MIC for bacteria ranged from 13.0 to > 200 µg/ml, whereas for fungi, the MIC ranged from 25.9 to > 200 µg/ml. Ethyl acetate extract of root with 100 µg/ml concentration showed 29.1 mm and 28.7 mm zone of inhibition against bacterial strains M. luteus and M. tuberculosis, respectively. The ethyl acetate extract of root with a 100 µg/ml concentration showed 15.8, 15.2, and 15.6 mm zone of inhibition against fungal isolates M. canis, T. interdigitale, and M. gypseum, respectively. The activity of root and leaf extracts increased in a concentration-dependent manner, and further, the compounds isolated from the crude extracts of leaf and root showed antimicrobial activity. Structural elucidation of isolated compounds Lambertic acid and Ferruginol was done using NMR spectroscopy. Reports indicate that Lambertic acid was isolated previously, but the isolation of hydroxy Ferruginol from S. oblonga leaf extract was reported unprecedented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Challa S, Mohana Sheela G, Neelapu NRR (2018) Understanding the bacterial biofilm resistance to antibiotics and immune evasion. In: Veera Bramha Chari P (ed) Implication of quorum sensing system in biofilm formation and virulence. Springer, Geneva, pp 369–381

    Google Scholar 

  2. Surekha C, Neelapu NRR (2018). In: Bramha Chari PV (ed) Implication of quorum sensing system in biofilm formation and virulence. Springe, Cham, pp 277–286

    Google Scholar 

  3. Challa S, Dutta T, Pallaval VBC, Neelapu NRR (2019). In: Bramha Chari PV (ed) Implication of quorum sensing and biofilm formation in medicine, agriculture and food industry. Springer, Basel, pp 101–119

    Google Scholar 

  4. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem 6:25–64

    Google Scholar 

  5. Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 36(1):22–32

    PubMed  Google Scholar 

  6. Weitzman I, Summerbell RC (1995) The dermatophytes. Clin Microbiol Rev 8(2):240–259

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Njateng GSS, Gatsing D, Mouokeu RS, Lunga PK, Kuiate J-R (2013) In vitro and in vivo antidermatophytic activity of the dichloromethane-methanol (1:1 v/v) extract from the stem bark of Polyscias fulva hiern (araliaceae). BMC Complement Altern Med 13(1):1–10

    Google Scholar 

  8. Khan TI, Dular AK, Solomon DM (2003) Biodiversity conservation in the thar desert; with emphasis on endemic and medicinal plants. Environmentalist 23(2):137–144

    Google Scholar 

  9. Balick MJ, Cox PA (1996) Plants, people, and culture: The science of ethnobotany. Scientific American Library, New York

    Google Scholar 

  10. Douglas Kinghorn A (2001) Pharmacognosy in the 21st century. J Pharm Pharmacol 53(2):135–148

    CAS  PubMed  Google Scholar 

  11. Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17(3):215–234

    CAS  PubMed  Google Scholar 

  12. Chovanová R, Mikulášová M, Vaverková Š (2013) In vitro antibacterial and antibiotic resistance modifying effect of bioactive plant extracts on methicillin-resistant Staphylococcus epidermidis. Int J Microbiol 2013:7609–7669

    Google Scholar 

  13. Musini A, Rao MJP, Giri A (2013) Phytochemical investigations and antibacterial activity of Salacia oblonga wall ethanolic extract. Ann Phytomed 2(1):102–107

    CAS  Google Scholar 

  14. Musini A, Giri A (2015) Antibacterial principles of Salacia oblonga wall extracts against drug resistance pathogens. Int J Sci Res 4(8):338–340

    Google Scholar 

  15. Deepak K, Nageswara Rao Reddy N, Challa S (2014) Role of antidiabetic compounds on glucose metabolism–a special focus on medicinal plant: Salacia sps. Med Chem 4(3):373–380

    Google Scholar 

  16. Deepak KGK, Challa S, Suhasin G, Nagesewara Rao Reddy N, Elansary HO, El-Ansary DO (2020) Antidiabetic and antilipidemic activity of root extracts of Salacia oblonga against streptozotocin-induced diabetes in wistar rats. Processes 8(3):301

    CAS  Google Scholar 

  17. Uthirapathy S, Ahamad J, Muath Sh, Ameen M (2021) Safety standards and antimicrobial activity of root of Salacia reticulata. Res J Phytochem 15:30–40

    CAS  Google Scholar 

  18. Manju S, Moorthy K (2021) In vitro study of antimicrobial activity of Salacia chinensis against Methicilin Resistance Staphylococcus aureus (MRSA). Gorteria J 34(1):410–413

    Google Scholar 

  19. Deepak K, Suneetha G, Surekha C (2015) In vitro clonal propagation of Salacia oblonga Wall. An endangered medicinal plant. Ann Phytomed 4(2):67–70

    CAS  Google Scholar 

  20. Srikanth R, Murali Krishna T, Harish Rao B, Surekha C (2020) Anti-biofilm activity and time kill kinetic effects of Salacia oblonga wall leaf and root extracts against clinical multi-drug resistance bacteria. Biomedicine 40(3):347–352

    Google Scholar 

  21. Musini A, Jayaram Prakash Rao Giri A (2015) Phytochemicals of Salacia oblonga responsible for free radical scavenging and antiproliferative activity against breast cancer cell lines (MDA-MB-231). Physiol Mol Biol Plants 21(4):583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Musini A, Gandi S, Rao K, Giri A (2016) HPLC polyphenolics profile and H2O2 induced cytoprotective effect of Salacia oblonga extracts on human lymphocytes. Advances in Biological Chemistry 6:19–27

    Google Scholar 

  23. Azoro C (2000) Anti-bacterial activity of crude extract of Azadirachita indica on Salmonella typhi. World J Biotechnol 3:347–351

    Google Scholar 

  24. Janovska D, Kubikova K, Kokoska L (2003) Screening for antimicrobial activity of some medicinal plants species of traditional chinese medicine. Czech J Food Sci 21(3):107–110

    Google Scholar 

  25. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16

    CAS  PubMed  Google Scholar 

  26. Nikaido H (2009) Multidrug resistance in bacteria. Ann Rev Biochem 78:119–146

    CAS  PubMed  Google Scholar 

  27. Rao MJP, Archana G (2010) Antimicrobial activity of the extracts of Salacia oblonga wall. Rec Res Sci Technol 2(10):1–4

    CAS  Google Scholar 

  28. Papitha N, Jayshree N, Seenivasan S, Kumar V (2013) Anti-tubercular activity on leaves and roots of Sida rhombifolia L. Int J Pharm Sci Rev Res 20(2):135–137

    CAS  Google Scholar 

  29. Kahaliw W, Aseffa A, Abebe M, Teferi M, Engidawork E (2017) Evaluation of the antimycobacterial activity of crude extracts and solvent fractions of selected ethiopian medicinal plants. BMC Complement Altern Med 17(1):143

    PubMed  PubMed Central  Google Scholar 

  30. Selladurai BM, Sivakumaran S, Aiyar S, Mohamad AR (1993) Intracranial suppuration caused by Micrococcus luteus. Br J Neurosurg 7(2):205–207

    CAS  PubMed  Google Scholar 

  31. Moellering RC Jr (1998) The specter of glycopeptide resistance: current trends and future considerations. Am J Med 104(5):3S-6S

    PubMed  Google Scholar 

  32. Surewaard BG, Thanabalasuriar A, Zeng Z, Tkaczyk C, Cohen TS, Bardoel BW, Jorch SK, Deppermann C, Wardenburg JB, Davis RP (2018) Α-toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe 24(2):271–284

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ena J, Dick RW, Jones RN, Wenzel RP (1993) The epidemiology of intravenous vancomycin usage in a university hospital: a 10-year study. JAMA 269(5):598–602

    CAS  PubMed  Google Scholar 

  34. Bassyouni RH, Kamel Z, Megahid A, Samir E (2012) Antimicrobial potential of Licorice: leaves versus roots. Afr J Microbiol Res 6(49):7485–7493

    Google Scholar 

  35. Ugochukwu AE, John DE, Amin AF, Chidi E, Nwobodo NN, Ogbonna OR, Peter OI, Nnamdi EI (2018) Bacteriostatic and bactericidal effects of ethyl acetate root bark extract of Terminalia avicennioides on methicillin-resistant Staphylococcus aureus. Afr J Biochem Res 12(5):45–54

    CAS  Google Scholar 

  36. Edberg S (1991) US EPA human health assessment: Bacillus subtilis. Unpublished. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  37. Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol Rev 46(1):86–94

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bryce A, Hay AD, Lane IF, Thornton HV, Wootton M, Costelloe C (2016) Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: systematic review and meta-analysis. BMJ 352:i939

    PubMed  PubMed Central  Google Scholar 

  39. Elisha IL, Botha FS, McGaw LJ, Eloff JN (2017) The anti-bacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement Altern Med 17(1):133

    PubMed  PubMed Central  Google Scholar 

  40. Naeim H, El-Hawiet A, Abdel Rahman RA, Hussein A, El Demellawy MA, Embaby AM (2020) Antibacterial activity of Centaurea pumilio l. Root and aerial part extracts against some multidrug resistant bacteria. BMC Complement Med Ther 20(1):79

    PubMed  PubMed Central  Google Scholar 

  41. Maxwell A (1997) DNA gyrase as a drug target. Trends Microbiol 5(3):102–109

    CAS  PubMed  Google Scholar 

  42. Polikanov Yury S, Aleksashin Nikolay A, Bertrand B, Wilson DN (2018) The mechanisms of action of ribosome-targeting peptide antibiotics. Front Mol Biosci. https://doi.org/10.3389/fmolb.2018.00048

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG (2018) Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu Rev Biochem 20(87):451–478. https://doi.org/10.1146/annurev-biochem-062917-011942

    Article  CAS  Google Scholar 

  44. Bavington C, Page C (2005) Stopping bacterial adhesion: A novel approach to treating infections. Respiration 72(4):335–344

    CAS  PubMed  Google Scholar 

  45. Brandt CW, Neubauer LG (1939) 221. Miro resin Part i. Ferruginol. J Chem Soc 221:1031–1037

    Google Scholar 

  46. González MA, Clark J, Connelly M, Rivas F (2014) Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group. Bioorg Med Chem Lett 24(22):5234–5237

    PubMed  Google Scholar 

  47. Ulubelen A, Birman H, Öksüz S, Topçu G, Kolak U, Barla A, Voelter W (2002) Cardioactive diterpenes from the roots of Salvia eriophora. Planta Med 68(09):818–821

    CAS  PubMed  Google Scholar 

  48. Ono M, Yamamoto M, Masuoka C, Ito Y, Yamashita M, Nohara T (1999) Diterpenes from the fruits of Vitex rotundifolia. J Nat Prod 62(11):1532–1537

    CAS  PubMed  Google Scholar 

  49. Samoylenko V, Dunbar DC, Gafur MA, Khan SI, Ross SA, Mossa JS, El-Feraly FS, Tekwani BL, Bosselaers J, Muhammad I (2008) Antiparasitic, nematicidal and antifouling constituents from Juniperus berries. Phytother Res 22(12):1570–1576

    CAS  PubMed  Google Scholar 

  50. Espinoza M, Santos LS, Theoduloz C, Schmeda-Hirschmann G, Rodríguez JA (2008) New gastroprotective ferruginol derivatives with selective cytotoxicity against gastric cancer cells. Planta Med 74(8):802–808

    CAS  PubMed  Google Scholar 

  51. Rodríguez J, Theoduloz C, Yáñez T, Becerra J, Schmeda-Hirschmann G (2006) Gastroprotective effect of the diterpene ferruginol in mice: Protection against membrane lipid peroxidation and involvement of prostaglandins. Life Sci 78:2503–2509

    PubMed  Google Scholar 

  52. Bispo de Jesus M, Zambuzzi WF, Ruela de Sousa RR, Areche C, Santos de Souza AC, Aoyama H, Schmeda-Hirschmann G, Rodríguez JA, de Souza M, Brito AR, den Peppelebosch MP, den Hertog J, de Paula E, Ferreira CV (2008) Ferruginol suppresses survival signaling pathways in androgen-independent human prostate cancer cells. Biochimie 90(6):843–854

    CAS  PubMed  Google Scholar 

  53. Jaiswal R, Beuria TK, Mohan R, Mahajan SK, Panda D (2007) Totarol inhibits bacterial cytokinesis by perturbing the assembly dynamics of FtsZ. Biochemistry 46:4211–4220

    CAS  PubMed  Google Scholar 

  54. Muroi H, Kubo I (1996) Antibacterial activity of anacardic acid and totarol, alone and in combination with methicillin, against methicillin-resistant Staphylococcus aureus. J Appl Bacteriol 80:387–394

    CAS  PubMed  Google Scholar 

  55. Constantine GH, Karchesy JJ, Franzblau SG, LaFleur LE (2001) Totarol from Chamaecyparis nootkatensis and activity against Mycobacterium tuberculosis. Fitoterapia 72:572–574

    CAS  PubMed  Google Scholar 

  56. Smith EC, Kaatz GW, Seo SM, Wareham N, Williamson EM, Gibbons S (2007) The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother 51:4480–4483

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao Y, Xu X, Chang S, Wang Y, Xu Y, Ran S et al (2015) Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: potential roles of Akt activation and HO-1 induction. Toxicol Appl Pharmacol 289:142–154

    CAS  PubMed  Google Scholar 

  58. Shi C, Che M, Zhang X, Liu Z, Meng R, Bu X, Ye H, Guo N (2018) Antibacterial activity and mode of action of totarol against Staphylococcus aureus in carrot juice. J Food Sci Technol 55(3):924–934

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of anti-microbial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RS, CS, VP, and NNR would like to thank GITAM (Deemed to be University) for providing necessary facilities and support.

Funding

The work was not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

RS, CS designed the study; RS, TM performed the experiments. RS, TM, CS, NNR, and VP analyzed the data and drafted the manuscript.

Corresponding author

Correspondence to Challa Surekha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surekha, C., Srikanth, R., Thupurani, M.K. et al. Antimicrobial Activities of Salacia oblonga Wall Leaf and Root Extracts Against Different Bacterial Strains and Fungal Isolates. Curr Microbiol 79, 204 (2022). https://doi.org/10.1007/s00284-022-02888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02888-4

Navigation