Skip to main content

Phenotypic Variability and Genetic Diversity of the Pathogenic Fungus Macrophomina phaseolina from Several Hosts and Host Specialization in Strawberry

Abstract

Macrophomina phaseolina, is a pathogenic soil-borne fungus that affects more than 500 plant species, causing various types of disease to several crops, among which is the crown and root rot disease in strawberry. Its wide variability has been characterized reiteratively in the literature, but little is known about its virulence mechanisms. Morphological, physiological, genetic and phytopathogenic parameters were evaluated among 32 isolates of Macrophomina from different hosts occurring in Argentina and Spain. Colony characteristics, average size of microsclerotia, chlorate phenotype and mycelial growth at different temperatures (5º–40 °C), and pH (3.0–8.0) were recorded. The morphological and physiological traits were heterogeneous and did not show any association with the genetic structure nor with their pathogenicity. Most of the isolates (71.9%) exhibited chlorate-sensitive phenotype. The optimal growth temperature range was between 25 °C and 35 °C, and the optimal pH varied between 4.0 and 6.0. The genetic structure analyzed with four DNA markers (EF-1α, ITS, CAL and TUB) showed little diversity among isolates of M. phaseolina, with no clear association with the country of origin, but a significant association with the host. Based on their phylogenetic affinity, one isolate was reclassified as M. pseudophaseolina and another one as M. tecta. It is the first report of M. pseudophaseolina causing charcoal rot on beans, in Argentina, and the first report of M. tecta outside Australia. Pathogenicity tests on strawberry plants revealed marked host specialization, being the isolates obtained from strawberry more virulent than those from other hosts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

DNA sequences from the nuclear loci have been deposited in GenBank with accession numbers MK447797-MK447922. Data and code have been deposited in a GitHub repository (https://github.com/csmiguel/characterization-macrophomina). A permanent release has been deposited in Zenodo doi: https://doi.org/10.5281/zenodo.6528544.

Code Availability

https://github.com/csmiguel/characterization-macrophomina.

References

  1. Farr DF, Rossman AY (2022) Fungal databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/. Accessed 3 Mar 2022.

  2. Kaur S, Dhillon GS, Brar SK et al (2012) Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Crit Rev Microbiol 38:136–151. https://doi.org/10.3109/1040841X.2011.640977

    CAS  Article  PubMed  Google Scholar 

  3. CABI (2021) Macrophomina phaseolina. Invasive Species Compend.

  4. Sarr MP, Ndiaye MB, Groenewald JZ, Crous PW (2014) Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathol Mediterr 53:250–268

    Google Scholar 

  5. Machado AR, Pinho DB, Soares DJ et al (2019) Bayesian analyses of five gene regions reveal a new phylogenetic species of Macrophomina associated with charcoal rot on oilseed crops in Brazil. Eur J Plant Pathol 153:89–100. https://doi.org/10.1007/s10658-018-1545-1

    Article  Google Scholar 

  6. Zhao L, Cai J, He W, Zhang Y (2019) Macrophomina vaccinii sp. nov. causing blueberry stem blight in China. MycoKeys 55:1–14. https://doi.org/10.3897/mycokeys.54.35015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Poudel B, Shivas RG, Adorada DL et al (2021) Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia. Eur J Plant Pathol. https://doi.org/10.1007/s10658-021-02300-0

    Article  Google Scholar 

  8. Tok FM, Dervis S, Arslan M (2018) Host selective virulence, temperature response and genetic diversity in Macrophomina phaseolina isolates from sesame and peanut in southern Turkey. Fresenius Environ Bull 27:7374–7380

    CAS  Google Scholar 

  9. Manici LM, Caputo F, Cerato C (1995) Temperature responses of isolates of Macrophomina phaseolina from different climatic regions of sunflower production in Italy. Plant Dis 79:834–838

    Article  Google Scholar 

  10. Mayek-Pérez N, Lopez-Castañeda C, González-Chavira M et al (2001) Variability of Mexican isolates of Macrophomina phaseolina based on pathogenesis and AFLP genotype. Physiol Mol Plant Pathol 59:257–264. https://doi.org/10.1006/pmpp.2001.0361

    CAS  Article  Google Scholar 

  11. Su G, Suh SO, Schneider RW, Russin JS (2001) Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathology 91:120–126. https://doi.org/10.1094/PHYTO.2001.91.2.120

    CAS  Article  PubMed  Google Scholar 

  12. Reyes-Franco MC, Hernández-Delgado S, Beas-Fernández R et al (2006) Pathogenic and genetic variability within Macrophomina phaseolina from Mexico and other countries. Phytopathology 154:447–453

    CAS  Article  Google Scholar 

  13. Saleh AA, Ahmed HU, Todd TC et al (2010) Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum. Mol Ecol 19:79–91. https://doi.org/10.1111/j.1365-294X.2009.04433.x

    CAS  Article  PubMed  Google Scholar 

  14. Mishra PK, Kumari M, Dantre RK (2021) Morpho-cultural and pathogenic variability in Macrophomina phaseolina isolates from soybean. Pharma Innov J 10:777–785

    Google Scholar 

  15. Pearson C, Leslie J, Schwenk F (1986) Variable chlorate resistance in Macrophomina. Phytopathology 76:646–649

    Article  Google Scholar 

  16. Mayek-Pérez N, Lopez Castaneda C, Acosta Gallegos JA (1997) Variation in vitro cultural characteristics of Macrophomina phaseolina isolates and its virulence on common bean. Agrociencia 31:187–195

    Google Scholar 

  17. Ashraf W, Sahi ST, ul Haq I, Ahmed S (2015) Morphological and pathogenic variability among Macrophomina phaseolina isolates associated with maize (Zea mays) in Punjab-Pakistan. Int J Agric Biol 17:1037–1042

    Google Scholar 

  18. Gomez AO (2020) Pathogenicity studies on strawberry to identify sources of resistance against Macrophomina phaseolina. University of Queensland

  19. Beas-Fernández R, De Santiago-De SA, Hernández-Delgado S, Mayek-Pérez N (2006) Characterization of Mexican and non-Mexican isolates of Macrophomina phaseolina based on morphological characteristics, pathogenicity on bean seeds and endoglucanase genes R. J Plant Pathol 88:53–60

    Google Scholar 

  20. Das IK, Fakrudin B, Arora DK (2008) RAPD cluster analysis and chlorate sensitivity of some Indian isolates of Macrophomina phaseolina from sorghum and their relationships with pathogenicity. Microbiol Res 163:215–224. https://doi.org/10.1016/j.micres.2006.05.006

    CAS  Article  PubMed  Google Scholar 

  21. Koike ST, Arias RS, Hogan CS et al (2016) Status of Macrophomina phaseolina on strawberry in california and preliminary characterization of the pathogen. Int J Fruit Sci 16:148–159. https://doi.org/10.1080/15538362.2016.1195313

    Article  Google Scholar 

  22. Zveibil A, Mor N, Gnayem N, Freeman S (2012) Survival, host-pathogen interaction, and management of Macrophomina phaseolina on strawberry in Israel. Plant Dis 96:265–272. https://doi.org/10.1094/PDIS-04-11-0299

    Article  PubMed  Google Scholar 

  23. Bargués-Ribera M, Gokhale CS (2020) Eco-evolutionary agriculture: host-pathogen dynamics in crop rotations. PLOS Comput Biol 16:e1007546. https://doi.org/10.1371/journal.pcbi.1007546

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Viejobueno J, Ramallo AC, Kirschbaum DS et al (2017) Severe outbreaks of strawberry crown and root charcoal rot caused by Macrophomina phaseolina in Tucumán, Argentina. Rev agronómica del noroeste argentino 37:111–114

    Google Scholar 

  25. Gomez AO, De Faveri J, Neal JM et al (2020) Response of strawberry cultivars inoculated with Macrophomina phaseolina in Australia. Int J Fruit Sci 20:164–177. https://doi.org/10.1080/15538362.2019.1709114

    Article  Google Scholar 

  26. Sánchez S, Henríquez JL, Urcola LA et al (2016) Susceptibility of strawberry cultivars to root and crown rot caused by Macrophomina phaseolina. J Berry Res 6:345–354. https://doi.org/10.3233/JBR-150114

    CAS  Article  Google Scholar 

  27. Koike ST (2008) Crown rot of strawberry caused by Macrophomina phaseolina in California. Plant Dis 92:1253–1253

    CAS  Article  Google Scholar 

  28. Baino OM, Salazar SM, Ramallo AC, Kirschbaum DS (2011) First report of Macrophomina phaseolina causing strawberry crown and root rot in Northwestern Argentina. Plant Dis 95:1477. https://doi.org/10.1094/PDIS-00-00-0000

    CAS  Article  PubMed  Google Scholar 

  29. Avilés M, Castillo S, Bascon J, et al (2008) First report of Macrophomina phaseolina causing crown and root rot of strawberry in Spain. Plant Pathol 57

  30. Kirschbaum DS, Vicente CE, Cano-Torres MA et al (2017) Strawberry in South America: from the Caribbean to Patagonia. Acta Hortic 1156:947–956

    Article  Google Scholar 

  31. Lodha S, Mawar R (2019) Population dynamics of Macrophomina phaseolina in relation to disease management: a review. J Phytopathol 168:1–17. https://doi.org/10.1111/jph.12854

    Article  Google Scholar 

  32. Baggio JS, Cordova LG, Peres NA (2019) Sources of inoculum and survival of Macrophomina phaseolina in florida strawberry fields. Plant Dis 103:2417–2424. https://doi.org/10.1094/PDIS-03-19-0510-RE

    CAS  Article  PubMed  Google Scholar 

  33. Csöndes I, Cseh A, Taller J, Poczai P (2012) Genetic diversity and effect of temperature and pH on the growth of Macrophomina phaseolina isolates from sunflower fields in Hungary. Mol Biol Rep 39:3259–3269

    Article  Google Scholar 

  34. Sánchez S, Chamorro M, Henríquez JL et al (2017) Genetic and biological characterization of Macrophomina phaseolina (Tassi) Goid. causing crown and root rot of strawberry. Chil J Agric Res 77:325–331. https://doi.org/10.4067/S0718-58392017000400325

    Article  Google Scholar 

  35. Papavizas GC, Klag NG (1975) Macrophomina phaseolina from soil. Phytopathology 65:182–187

    Article  Google Scholar 

  36. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJournal 17:10–12

    Google Scholar 

  37. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Wright ES (2016) Using DECIPHER v2.0 to analyze big biological sequence data in R”. R J 8:352–359

    Article  Google Scholar 

  39. Borowiec ML (2016) AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4:e1660. https://doi.org/10.7717/peerj.1660

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gadagkar SR, Rosenberg MS, Kumar S (2005) Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool Part B Mol Dev Evol 304B:64–74. https://doi.org/10.1002/jez.b.21026

    CAS  Article  Google Scholar 

  41. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Bouckaert R, Heled J, Kuehnert D et al (2014) BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    Article  Google Scholar 

  43. Lanfear R, Frandsen PB, Wright AM et al (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. https://doi.org/10.1093/molbev/msw260

    CAS  Article  Google Scholar 

  44. Rambaut A, Drummond AJ, Xie D et al (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  46. Clement M, Snell Q, Walker P et al (2002) TCS: estimating gene genealogies. Int Proc Parallel Distrib Process Symp 2:184–190

    Google Scholar 

  47. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Vengadeshkumar L, Kalaiselvi M, Sanjaygandhi S, Jaiganesh V (2019) Survey on the incidence of cowpea root rot disease and assessing the cultural characters and virulence of Macrophomina phaseolina. Plant Arch 17:143–148

    Google Scholar 

  49. Mohanapriya R, Naveenkumar R, Balabaskar P (2017) Survey, virulence and pathogenicity of root rot incidence of cowpea in selected districts of Tamilnadu caused by Macrophomina phaseolina (Tassi.) Goid. Int J Curr Microbiol Appl Sci 6:694–705

    CAS  Article  Google Scholar 

  50. Youssef S, Shalaby AA, Pickel B et al (2021) Selecting tolerant strawberry germplasm to the fungus Macrophomina phaseolina. Acta Hortic 1309:751–758

    Article  Google Scholar 

  51. de Assis Melo NJ, de Lima AG, Negreiros AMP et al (2021) Pathogenicity of Macrophomina phaseolina in cultivars and accessions of Cucumis melo. J Plant Pathol. https://doi.org/10.1007/s42161-021-00832-2

    Article  Google Scholar 

  52. Fang X, Phillips D, Li H et al (2011) Comparisons of virulence of pathogens associated with crown and root diseases of strawberry in Western Australia with special reference to the effect of temperature. Sci Hortic (Amsterdam) 131:39–48. https://doi.org/10.1016/j.scienta.2011.09.025

    Article  Google Scholar 

  53. Aboshosha SS, Attaalla SI, El-Korany AE, El-Argawy E (2007) Characterization of Macrophomina phaseolina isolates affecting sunflower growth in El-Behera governorate, Egypt. Int J Agric Biol 9:807–815

    CAS  Google Scholar 

  54. Nishad I, Srivastava AK, Saroj A et al (2018) First report of Nepeta cataria root rot caused by Macrophomina phaseolina in India. Plant Dis 102:2380

    Article  Google Scholar 

  55. Wagan KH, Khaskheli MI, Lanjar AG (2018) Isolation and characterization of Macrophomina phaseolina isolates prevailing in Sindh, Pakistan. Pure Appl Biol 7:1309–1315

    Article  Google Scholar 

  56. Purkayastha S, Kaur B, Dilbaghi N, Chaudhury A (2006) Characterization of Macrophomina phaseolina, the charcoal rot pathogen of cluster bean, using conventional techniques and PCR-based molecular markers. Plant Pathol 55:106–116. https://doi.org/10.1111/j.1365-3059.2005.01317.x

    CAS  Article  Google Scholar 

  57. Mahdizadeh V, Safaie N, Goltapeh EM (2011) Diversity of Macrophomina phaseolina based on morphological and genotypic characteristics in Iran. Plant Pathol J 27:128–137. https://doi.org/10.5423/PPJ.2011.27.2.128

    CAS  Article  Google Scholar 

  58. Mihail JD, TayIor SJ (1995) Interpreting of variability among isolates of Macrophomina phaseolina in patogenicity, pycnidium production, and chlorate utilization. Can Joumal Bot 73:1596–1603. https://doi.org/10.1139/b95-172

    Article  Google Scholar 

  59. Dhingra OD, Sinclair JB (1978) Biology and pathology of Macrophomina phaseolina. Universidade Federal de Viçosa, Viçosa-Mina Gerais- Brasil

    Google Scholar 

  60. Bruton BD, Biles CL, Dunlap JR (1995) Nutrient utilization of Macrophomina phaseolina: a chromogenic isolate from cantaloupe fruit. Subtrop Plant Sci 47:46–52

    Google Scholar 

  61. Nischwitz C, Olsen M, Rasmussen S (2004) Effect of irrigation type on inoculum density of Macrophomina phaseolina in melon fields in Arizona. J Phytopathol 152:133–137

    Article  Google Scholar 

  62. Khan AN, Shair F, Malik K et al (2017) Molecular identification and genetic characterization of Macrophomina phaseolina strains causing pathogenicity on sunflower and chickpea. Front Microbiol 8:1309. https://doi.org/10.3389/fmicb.2017.01309

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jana T, Sharma TR, Prasad RD, Arora DK (2003) Molecular characterization of Macrophomina phaseolina and Fusarium species by a single primer RAPD technique. Microbiol Res 158:249–257. https://doi.org/10.1078/0944-5013-00198

    CAS  Article  PubMed  Google Scholar 

  64. Jana TK, Singh NK, Koundal KR, Sharma TR (2005) Genetic differentiation of charcoal rot pathogen, Macrophomina phaseolina, into specific groups using URP-PCR. Can J Microbiol 51:159–164. https://doi.org/10.1139/w04-122

    CAS  Article  PubMed  Google Scholar 

  65. de Queiroz Brito AC, Ferreira de Mello J, Michereff SJ et al (2019) First report of Macrophomina pseudophaseolina causing stem dry rot in cassava in Brazil. J Plant Pathol 101:1245–1245

    Article  Google Scholar 

  66. Negreiros AMP, Sales Júnior R, León M et al (2019) Identification and pathogenicity of Macrophomina species collected from weeds in melon fields in Northeastern Brazil. J Phytopathol 167:326–337. https://doi.org/10.1111/jph.12801

    CAS  Article  Google Scholar 

  67. Mastan A, Bharadwaj R, Kushwaha RK, Vivek Babu CS (2019) Functional fungal endophytes in Coleus forskohlii regulate labdane diterpene biosynthesis for elevated forskolin accumulation in roots. Microb Ecol 78:914–926. https://doi.org/10.1007/s00248-019-01376-w

    CAS  Article  PubMed  Google Scholar 

  68. Berbegal M, Ortega A, Jiménez-Gasco MM et al (2010) Genetic diversity and host range of Verticillium dahliae isolates from artichoke and other vegetable crops in Spain. Plant Dis 94:396–404. https://doi.org/10.1094/PDIS-94-4-0396

    CAS  Article  PubMed  Google Scholar 

  69. Almeida ÁMR, Sosa-Gomez DR, Binneck E et al (2008) Effect of crop rotation on specialization and genetic diversity of Macrophomina phaseolina. Trop Plant Pathol 33:257–264. https://doi.org/10.1590/S1982-56762008000400001

    Article  Google Scholar 

  70. Fuhlbohm MJ, Ryley MJ, Aitken EAB (2012) New weed hosts of Macrophomina phaseolina in Australia. Australas Plant Dis Notes 7:193–195. https://doi.org/10.1007/s13314-012-0082-6

    Article  Google Scholar 

  71. Mihail JD, Taylor SJ (1995) Interpreting variability among isolates of Macrophomina phaseolina in pathogenicity pycnidium production, and chlorate utilization. Can J Bot 73:1596–1603

    Article  Google Scholar 

  72. Borah N, Albarouki E, Schirawski J (2018) Comparative methods for molecular determination of host-specificity factors in plant-pathogenic fungi. Int J Mol Sci 19:863. https://doi.org/10.3390/ijms19030863

    CAS  Article  PubMed Central  Google Scholar 

  73. van der Does HC, Rep M (2007) Virulence genes and the evolution of host specificity in plant-pathogenic fungi. Mol Plant-Microbe Interact 20:1175–1182. https://doi.org/10.1094/MPMI-20-10-1175

    CAS  Article  PubMed  Google Scholar 

  74. Lind MI, Spagopoulou F (2018) Evolutionary consequences of epigenetic inheritance Heredity (Edinb) 121:205–209. https://doi.org/10.1038/s41437-018-0113-y

    Article  Google Scholar 

  75. Stajic D, Jansen LET (2021) Empirical evidence for epigenetic inheritance driving evolutionary adaptation. Philos Trans R Soc B Biol Sci 376:20200121. https://doi.org/10.1098/rstb.2020.0121

    CAS  Article  Google Scholar 

  76. Kasuga T, Gijzen M (2013) Epigenetics and the evolution of virulence. Trends Microbiol 21:575–582. https://doi.org/10.1016/j.tim.2013.09.003

    CAS  Article  PubMed  Google Scholar 

  77. He C, Zhang Z, Li B, Tian S (2020) The Pattern and function of DNA methylation in fungal plant pathogens. Microorganisms 8:227. https://doi.org/10.3390/microorganisms8020227

    CAS  Article  PubMed Central  Google Scholar 

  78. Tini F, Beccari G, Marconi G et al (2021) Identification of putative virulence genes by DNA methylation studies in the cereal pathogen Fusarium graminearum. Cells 10:1192. https://doi.org/10.3390/cells10051192

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Dubey A, Jeon J (2017) Epigenetic regulation of development and pathogenesis in fungal plant pathogens. Mol Plant Pathol 18:887–898. https://doi.org/10.1111/mpp.12499

    Article  PubMed  Google Scholar 

  80. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556. https://doi.org/10.1080/00275514.1999.12061051

    CAS  Article  Google Scholar 

  81. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322

    Google Scholar 

  82. O´Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of a joint project between Instituto Nacional de Tecnología Agropecuaria-EEA Famaillá and Instituto Andaluz de Investigación y Formación Agraria, Pesquera y Alimentaria y de la Producción Ecológica. It was partially supported with grants of the Universidad Nacional de Tucumán (Program A621), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2017-0653) and INTA (PNHFA 1106073, 2019-PD-E4-I069-001, 2019-PD-E4-I085-001) and by Instituto Andaluz de Investigación y Formación Agraria, Pesquera y Alimentaria y de la Producción Ecológica and 80 % Fondo Europeo de Desarrollo Regional (FEDER) (PP.AVA 2016.010). Authors are grateful to Strawberry Active Germplasm Bank (BGA) from Universidad Nacional de Tucumán (UNT). We thank María del Carmen and Olga Gómez Saavedra, and Miguel Ángel Fernández Ayala for helping in the laboratory. JV is CONICET fellowship.

Funding

Partial financial support was received from Universidad Nacional de Tucumán (Program A621), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2017-0653), INTA (PNHFA 1106073, 2019-PD-E4-I069-001, 2019-PD-E4-I085-001), Instituto de Investigación y Formación Agraria y Pesquera de Andalucía (IFAPA) and 80% Fondo Europeo de Desarrollo Regional (FEDER) (PP.AVA 2016.010).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JV, BS, SMS; Methodology: JV, BS, AA, SMS; Formal analysis and investigation: JV, BS, AA, MCS; Writing—original draft preparation: JV; Writing—review and editing: JV, BS, MCS, MC, SMS; Funding acquisition: BS, MC, SMS; Resources: BS, AA, MC, SMS; Supervision: BS, AA, MC, SMS.

Corresponding author

Correspondence to Josefina Viejobueno.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to Participate

All authors consent to participate in this study.

Consent for Publication

All authors consent to publish this work in Current Microbiology.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viejobueno, J., de los Santos, B., Camacho-Sanchez, M. et al. Phenotypic Variability and Genetic Diversity of the Pathogenic Fungus Macrophomina phaseolina from Several Hosts and Host Specialization in Strawberry. Curr Microbiol 79, 189 (2022). https://doi.org/10.1007/s00284-022-02883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02883-9