Skip to main content
Log in

Characterization and Whole-Genome Analysis of a Zearalenone-Degrading Stappia sp. WLB 29

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Zearalenone (ZEN) is a widely distributed mycotoxin that frequently contaminates crops and animal feed. Our previous studies showed that a new strain, Stappia sp. WLB 29 with a 97.47% of similarity to Stappia indica B106T, isolated from the soil samples in the rhizosphere of the crops in Xinjiang, was capable of effectively degrading ZEN in minimal medium. In this study, we determined the complete genomic sequence of the Stappia sp. WLB 29 (Genbank accession number: JALBGD000000000; BioProject ID in GenBank is PRJNA814005). The total length of all sequences was 4,745,415 bp with a GC content of 67.08%. Moreover, the genome-wide analysis showed the presence of laccase- and peroxiredoxin-encoding genes in Stappia sp. WLB 29, which may be associated with ZEN degradation. The genome sequence of Stappia sp. WLB 29 reported here will serve as a reference for comparative genomic studies of ZEN degradation in the feed and food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chang H, Kim W, Park J-H, Kim D, Kim C-R, Chung S et al (2017) The occurrence of zearalenone in South Korean feedstuffs between 2009 and 2016. Toxins 9(7):223. https://doi.org/10.3390/toxins9070223

    Article  CAS  PubMed Central  Google Scholar 

  2. Kalagatur NK, Karthick K, Allen JA, Ghosh OSN, Chandranayaka S, Gupta VK et al (2017) Application of activated carbon derived from seed shells of Jatropha curcas for decontamination of zearalenone mycotoxin. Front Pharmacol. https://doi.org/10.3389/fphar.2017.00760

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shier WT, Shier AC, Xie W, Mirocha CJ (2001) Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon 39(9):1435–1438. https://doi.org/10.1016/s0041-0101(00)00259-2

    Article  CAS  PubMed  Google Scholar 

  4. Yu ZL, Zhang LS, Wu DS, Liu FY (2005) Anti-apoptotic action of zearalenone in MCF-7 cells. Ecotoxicol Environ Saf 62(3):441–446. https://doi.org/10.1016/j.ecoenv.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  5. Zheng W, Wang B, Li X, Wang T, Zou H, Gu J et al (2018) Zearalenone promotes cell proliferation or causes cell death? Toxins. https://doi.org/10.3390/toxins10050184

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fu G, Ma J, Wang L, Yang X, Liu J, Zhao X (2016) Effect of degradation of zearalenone-contaminated feed by Bacillus licheniformis CK1 on postweaning female piglets. Toxins 8(10):300

    Article  Google Scholar 

  7. Ju J, Tinyiro SE, Yao W, Yu H, Guo Y, Qian H et al (2019) The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food. J Food Process Preserv. https://doi.org/10.1111/jfpp.14122

    Article  Google Scholar 

  8. Kamimura H (1986) Conversion of zearalenone to zearalenone glycoside by Rhizopus sp. Appl Environ Microbiol 52(3):515–519. https://doi.org/10.1128/aem.52.3.515-519.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun X, He X, Xue KS, Li Y, Xu D, Qian H (2014) Biological detoxification of zearalenone by Aspergillus niger strain FS10. Food Chem Toxicol 72:76–82. https://doi.org/10.1016/j.fct.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  10. Kaempfer P, Arun AB, Frischmann A, Busse HJ, Young C-C, Rekha PD et al (2013) Stappia taiwanensis sp nov., isolated from a coastal thermal spring. Int J Syst Evol Microbiol 63:1350–1354. https://doi.org/10.1099/ijs.0.044966-0

    Article  CAS  Google Scholar 

  11. Jiang S, Sun Y-Y, Lian F-B, Zhang X-K, Du Z-J (2021) Stappia albiluteola sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.004807

    Article  PubMed  Google Scholar 

  12. Weber CF, King GM (2007) Physiological, ecological, and phylogenetic characterization of Stappia, a marine CO-oxidizing bacterial genus. Appl Environ Microbiol 73(4):1266–1276. https://doi.org/10.1128/aem.01724-06

    Article  CAS  PubMed  Google Scholar 

  13. Cui Y-W, Zhang H-Y, Lu P-F, Peng Y-Z (2016) Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process. Sci Rep. https://doi.org/10.1038/srep30766

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharma A, Pandey A, Shouche YS, Kumar B, Kulkarni G (2009) Characterization and identification of Geobacillus spp. isolated from Soldhar hot spring site of Garhwal Himalaya, India. J Basic Microbiol 49(2):187–194. https://doi.org/10.1002/jobm.200800194

    Article  CAS  PubMed  Google Scholar 

  15. Kajale S, Deshpande N, Pali S, Shouche Y, Sharma A (2020) Natrialba swarupiae sp. nov., a halophilic archaeon isolated from a hypersaline lake in India. Int J Syst Evol Microbiol 70(3):1876–1881. https://doi.org/10.1099/ijsem.0.003986

    Article  CAS  PubMed  Google Scholar 

  16. Wang G, Yu M, Dong F, Shi J, Xu J (2017) Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21. Food Control 77:57–64. https://doi.org/10.1016/j.foodcont.2017.01.021

    Article  CAS  Google Scholar 

  17. Xiang L, Wang Q, Zhou Y, Yin L, Zhang G, Ma Y (2016) High-level expression of a ZEN-detoxifying gene by codon optimization and biobrick in Pichia pastoris. Microbiol Res 193:48–56. https://doi.org/10.1016/j.micres.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  18. Ahamed A, Vermette P (2009) Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Biores Technol 100(23):5979–5987. https://doi.org/10.1016/j.biortech.2009.02.070

    Article  CAS  Google Scholar 

  19. Anani H, Abou Abdallah R, Khoder M, Fontanini A, Mailhe M, Ricaboni D et al (2019) Colibacter massiliensis gen. nov. sp. nov., a novel gram-stain-positive anaerobic diplococcal bacterium, isolated from the human left colon. Sci Rep. https://doi.org/10.1038/s41598-019-53791-1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zgheib R, Anani H, Raoult D, Fournier P-E (2020) Draft genome sequence of Salirhabdus euzebyi strain Q1438. Microbiol Resour Announc. https://doi.org/10.1128/mra.00246-20

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe 9(3):111–118

    Google Scholar 

  22. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 110(10):1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  Google Scholar 

  23. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Goker M (2021) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab902

    Article  PubMed Central  Google Scholar 

  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Goeker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68(1):461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  26. Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24(5):500–513. https://doi.org/10.1016/j.biotechadv.2006.04.003

    Article  CAS  Google Scholar 

  27. Chaurasia PK, Bharati SL, Sharma M, Singh SK, Yadav RSS, Yadava S (2015) Fungal laccases and their biotechnological significances in the current perspective: a review. Curr Org Chem 19(19):1916–1934. https://doi.org/10.2174/1385272819666150629175237

    Article  CAS  Google Scholar 

  28. Yu Y, Wu H, Tang Y, Qiu L (2012) Cloning, expression of a peroxiredoxin gene from Acinetobacter sp SM04 and characterization of its recombinant protein for zearalenone detoxification. Microbiol Res 167(3):121–126. https://doi.org/10.1016/j.micres.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  29. Tinyiro SE, Wokadala C, Xu D, Yao W (2011) Adsorption and degradation of zearalenone by Bacillus strains. Folia Microbiol 56(4):321–327. https://doi.org/10.1007/s12223-011-0047-8

    Article  CAS  Google Scholar 

  30. Guo Y, Zhou J, Tang Y, Ma Q, Zhang J, Ji C et al (2020) Characterization and genome analysis of a zearalenone-degrading Bacillus velezensis strain ANSB01E. Curr Microbiol 77(2):273–278. https://doi.org/10.1007/s00284-019-01811-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFC1606800) and the National Natural Science Foundation of China (No. 32060004).

Author information

Authors and Affiliations

Authors

Contributions

NW and HHG performed the experiments, QX and ZDZ analyzed the data, NW and QX wrote the paper, ZDZ and QX revised the paper, and QX supervised.

Corresponding authors

Correspondence to Qing Xu or Zhidong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 9 kb)

Supplementary file2 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N., Gao, H., Xu, Q. et al. Characterization and Whole-Genome Analysis of a Zearalenone-Degrading Stappia sp. WLB 29. Curr Microbiol 79, 179 (2022). https://doi.org/10.1007/s00284-022-02874-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02874-w

Navigation