Skip to main content

Advertisement

Log in

Insights into Bacterial Community Structure and Metabolic Diversity of Mercury-Contaminated Sediments from Hyeongsan River, Pohang, South Korea

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study investigated the bacterial community structure and metabolic diversity and their relationship with Hg and other environmental variables in sediments collected from different locations (HSR-1–HSR-6) in the Hyeongsan River estuary in South Korea. The results showed that the highest total mercury (THg) and methylmercury (MeHg) concentrations were in HSR-2, with values of 4585.3 µg/kg and 13.4 µg/kg, respectively. The lowest THg (31.9 µg/kg) and MeHg (0.1 µg/kg) concentrations were found in HSR-1. Sulfate and organic matter (OM) were more influential environmental variables, revealing a positive association with THg and MeHg and negatively affecting bacterial and metabolic diversities. Bacterial and metabolic diversities were also negatively impacted by the THg and MeHg concentrations. Proteobacteria and Bacteroidetes were abundantly distributed in all the sediments. The dominance of Proteobacteria was upscaled in all the heavily Hg-contaminated sites (HSR-2–HSR-6), and it was the only phylum that showed a significant positive correlation with THg, MeHg, and OM. The genera Sulfurovum and Sulfurimonas were abundantly observed in sites with high Hg contamination, whereas Congregibacter, Gaetbulibacter, Ilumatobacter, Methylotenera, Nevskia, and Sediminibacter were only detected in low Hg-contaminated sites (HSR-1). The community-level physiological profile data showed the highest (1.0) average well color development (AWCD) value in HSR-1 and the lowest (0.45) AWCD value in HSR-2. Overall, these results demonstrated the inhibitory effects of THg, MeHg, and other environmental variables on microbial communities and metabolic diversity. These findings broaden the current knowledge on the dynamics of bacterial and metabolic diversities in Hg-contaminated sediments and might be useful in the management of Hg pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All 16S rRNA amplicon sequence data were deposited in the NCBI GenBank under BioProject accession number PRJNA718171.

References

  1. Batten KM, Scow KM (2003) Sediment microbial community composition and methylmercury pollution at four mercury mine-impacted sites. Microb Ecol 46:429–441. https://doi.org/10.1007/s00248-003-1005-z

    Article  CAS  PubMed  Google Scholar 

  2. Bussan DD, Sessums RF, Cizdziel JV (2016) Activated carbon and biochar reduce mercury methylation potentials in aquatic sediments. Bull Environ Contam Toxicol 96:536–539. https://doi.org/10.1007/s00128-016-1734-6

    Article  CAS  PubMed  Google Scholar 

  3. Bouskill NJ, Barker-Finkel J, Galloway TS, Handy RD, Ford TE (2010) Temporal bacterial diversity associated with metal-contaminated river sediments. Ecotoxicology 19:317–328. https://doi.org/10.1007/s10646-009-0414-2

    Article  CAS  PubMed  Google Scholar 

  4. Costa PS, Reis MP, Ávila MP, Leite LR, de Araújo FMG, Salim ACM, Oliveira G, Barbosa F, Chartone-Souza E, Nascimento AMA (2015) Metagenome of a microbial community inhabiting a metal-rich tropical stream sediment. PLoS ONE 10:e0119465. https://doi.org/10.1371/journal.pone.0119465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhuang M, Sanganyado E, Li P, Liu W (2019) Distribution of microbial communities in metal-contaminated nearshore sediment from Eastern Guangdong, China. Environ Pollut 250:482–492. https://doi.org/10.1016/j.envpol.2019.04.041

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, Meng Z, Liu X, Zhang X-H (2019) Microbial assembly, interaction, functioning, activity and diversification: a review derived from community compositional data. Mar Life Sci Technol 1:112–128. https://doi.org/10.1007/s42995-019-00004-3

    Article  Google Scholar 

  7. Di Cesare A, Pjevac P, Eckert E, Curkov N, Miko Šparica M, Corno G, Orlić S (2020) The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. Environ Pollut 265:114823. https://doi.org/10.1016/j.envpol.2020.114823

    Article  CAS  PubMed  Google Scholar 

  8. Seeley ME, Song B, Passie R, Hale RC (2020) Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat Commun 11:2372. https://doi.org/10.1038/s41467-020-16235-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jonas RB, Gilmour CC, Stoner DL, Weir MM, Tuttle JH (1984) Comparison of methods to measure acute metal and organometal toxicity to natural aquatic microbial communities. Appl Environ Microbiol 47:1005–1011. https://doi.org/10.1128/aem.47.5.1005-1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilmour CC, Bullock AL, McBurney A, Podar M, Elias DA (2018) Robust mercury methylation across diverse methanogenic archaea. MBio 9:e02403-02417. https://doi.org/10.1128/mBio.02403-17

    Article  Google Scholar 

  11. Parks JM, Johs A, Podar M, Bridou R, Hurt RA, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335. https://doi.org/10.1126/science.1230667

    Article  CAS  PubMed  Google Scholar 

  12. Graham AM, Aiken GR, Gilmour CC (2013) Effect of dissolved organic matter source and character on microbial Hg methylation in Hg-S-DOM solutions. Environ Sci Technol 47:5746–5754. https://doi.org/10.1021/es400414a

    Article  CAS  PubMed  Google Scholar 

  13. Rani A, Rockne KJ, Drummond J, Al-Hinai M, Ranjan R (2015) Geochemical influences and mercury methylation of a dental wastewater microbiome. Sci Rep 5:12872. https://doi.org/10.1038/srep12872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bailon MX, David AS, Park Y, Kim E, Hong Y (2018) Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea. Environ Monit Assess 190:274. https://doi.org/10.1007/s10661-018-6624-4

    Article  CAS  PubMed  Google Scholar 

  15. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31. https://doi.org/10.1007/s002440010075

    Article  CAS  PubMed  Google Scholar 

  16. Bailon MX, Park M, Choi YG, Reible D, Hong Y (2020) The application of DGTs for assessing the effectiveness of in situ management of Hg and heavy metal contaminated sediment. Membr Water Treat 11:11–23. https://doi.org/10.12989/mwt.2020.11.1.011

    Article  Google Scholar 

  17. Bailon MX, Park M-O, Hong Y (2019) Passive sampling methods for assessing the bioaccumulation of heavy metals in sediments. Curr Pollut Rep 5:129–143. https://doi.org/10.1007/s40726-019-00111-w

    Article  CAS  Google Scholar 

  18. Koh CH, Khim JS, Kannan K, Villeneuve DL, Senthilkumar K, Giesy JP (2004) Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) and 2,3,7,8-TCDD equivalents (TEQs) in sediment from the Hyeongsan River, Korea. Environ Pollut 132:489–501. https://doi.org/10.1016/j.envpol.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  19. Hoque ME, Islam M, Karmakar S, Rahman MA, Bhuyan MS (2021) Sediment organic matter and physicochemical properties of a multipurpose artificial lake to assess catchment land use: a case study of Kaptai Lake, Bangladesh. Environ Chall 3:100070. https://doi.org/10.1016/j.envc.2021.100070

    Article  Google Scholar 

  20. Chaudhary DK, Bajagain R, Jeong S-W, Kim J (2019) Development of a bacterial consortium comprising oil-degraders and diazotrophic bacteria for elimination of exogenous nitrogen requirement in bioremediation of diesel-contaminated soil. World J Microbiol Biotechnol 35:99. https://doi.org/10.1007/s11274-019-2674-1

    Article  CAS  PubMed  Google Scholar 

  21. USEPA (1998) Method 1630: methyl mercury in water by distillation, aqueous ethylation, purge and trap, and cold vapor atomic fluorescence spectrometry. Office of Water and Office of Science and Technology, Washington

    Google Scholar 

  22. Salehi MH, Beni OH, Harchegani HB, Borujeni IE, Motaghian HR (2011) Refining soil organic matter determination by loss-on-ignition. Pedosphere 21:473–482. https://doi.org/10.1016/S1002-0160(11)60149-5

    Article  Google Scholar 

  23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pẽa AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li W, Fu L, Niu B, Wu S, Wooley J (2012) Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform 13:656–668. https://doi.org/10.1093/bib/bbs035

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stackebrandt E, Goebel BM (1994) Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849. https://doi.org/10.1099/00207713-44-4-846

    Article  CAS  Google Scholar 

  27. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  28. Grządziel J, Furtak K, Gałązka A (2019) Community-level physiological profiles of microorganisms from different types of soil that are characteristic to Poland—a long-term microplot experiment. Sustainability 11:56. https://doi.org/10.3390/su11010056

    Article  CAS  Google Scholar 

  29. Christensen GA, Somenahally AC, Moberly JG, Miller CM, King AJ, Gilmour CC, Brown SD, Podar M, Brandt CC, Brooks SC, Palumbo AV, Wall JD, Elias DA (2018) Carbon amendments alter microbial community structure and net mercury methylation potential in sediments. Appl Environ Microbiol 84:e01049-e11017. https://doi.org/10.1128/AEM.01049-17

    Article  PubMed  PubMed Central  Google Scholar 

  30. Han Y-S, Kim S-H, Chon C-M, Kwon S, Kim JG, Choi HW, Ahn JS (2020) Effect of FeS on mercury behavior in mercury-contaminated stream sediment: a case study of Pohang Gumu Creek in South Korea. J Hazard Mater 393:122373. https://doi.org/10.1016/j.jhazmat.2020.122373

    Article  CAS  PubMed  Google Scholar 

  31. Lai TM, Lee W, Hur J, Kim Y, Huh I-A, Shin H-S, Kim C-K, Lee J-H (2013) Influence of sediment grain size and land use on the distributions of heavy metals in sediments of the Han River Basin in Korea and the assessment of anthropogenic pollution. Water Air Soil Pollut 224:1609. https://doi.org/10.1007/s11270-013-1609-y

    Article  CAS  Google Scholar 

  32. Sin SN, Chua H, Lo W, Ng LM (2001) Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ Int 26:297–301. https://doi.org/10.1016/S0160-4120(01)00003-4

    Article  CAS  PubMed  Google Scholar 

  33. Hogarh JN, Adu-Gyamfi E, Nukpezah D, Akoto O, Adu-Kumi S (2016) Contamination from mercury and other heavy metals in a mining district in Ghana: discerning recent trends from sediment core analysis. Environ Syst Res 5:15. https://doi.org/10.1186/s40068-016-0067-0

    Article  Google Scholar 

  34. Duodu GO, Goonetilleke A, Ayoko GA (2016) Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ Pollut 219:1077–1091. https://doi.org/10.1016/j.envpol.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  35. Bigham GN, Murray KJ, Masue-Slowey Y, Henry EA (2017) Biogeochemical controls on methylmercury in soils and sediments: Implications for site management. Integr Environ Assess Manag 13:249–263. https://doi.org/10.1002/ieam.1822

    Article  CAS  PubMed  Google Scholar 

  36. Abdelmageed Y, Miller C, Sanders C, Egbo T, Johs A, Robertson B (2021) Assessing microbial communities related to mercury transformations in contaminated streambank soils. Water Air Soil Pollut 232:31. https://doi.org/10.1007/s11270-020-04978-0

    Article  CAS  Google Scholar 

  37. Ferreira Portela J, Rudrigues de Souza JP, de Sousa TM, Elias Bernardi JV, Garnier J, Rodrigues SouzaDe J (2019) Evaluation of total mercury in sediments of the Descoberto River environmental protection area–Brazil. Int J Environ Res Public Health 17:154. https://doi.org/10.3390/ijerph17010154

    Article  CAS  PubMed Central  Google Scholar 

  38. Lambertsson L, Nilsson M (2006) Organic material: The primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments. Environ Sci Technol 40:1822–1829. https://doi.org/10.1021/es051785h

    Article  CAS  PubMed  Google Scholar 

  39. Rasmussen LD, Sørensen SJ (2001) Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbiol Ecol 36:1–9. https://doi.org/10.1111/j.1574-6941.2001.tb00820.x

    Article  CAS  PubMed  Google Scholar 

  40. Štyriaková D, Štyriaková I, Štyriak I, Šuba J, Danková Z, Gešperová D (2015) Inhibition effect of heterotrophic microorganisms on Cu and Zn cations mobilization from contaminated soil and sediment. Procedia Earth Planet Sci 15:866–871. https://doi.org/10.1016/j.proeps.2015.08.153

    Article  CAS  Google Scholar 

  41. Frossard A, Hartmann M, Frey B (2017) Tolerance of the forest soil microbiome to increasing mercury concentrations. Soil Biol Biochem 105:162–176. https://doi.org/10.1016/j.soilbio.2016.11.016

    Article  CAS  Google Scholar 

  42. Salam LB, Shomope H, Ummi Z, Bukar F (2019) Mercury contamination imposes structural shift on the microbial community of an agricultural soil. Bull Natl Res Cent 43:163. https://doi.org/10.1186/s42269-019-0208-5

    Article  Google Scholar 

  43. Liu Y-R, Delgado-Baquerizo M, Bi L, Zhu J, He J-Z (2018) Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome 6:183. https://doi.org/10.1186/s40168-018-0572-7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Oliveri E, Salvagio Manta D, Bonsignore M, Cappello S, Tranchida G, Bagnato E, Sabatino N, Santisi S, Sprovieri M (2016) Mobility of mercury in contaminated marine sediments: biogeochemical pathways. Mar Chem 186:1–10. https://doi.org/10.1016/j.marchem.2016.07.002

    Article  CAS  Google Scholar 

  45. Vishnivetskaya TA, Mosher JJ, Palumbo AV, Yang ZK, Podar M, Brown SD, Brooks SC, Gu B, Southworth GR, Drake MM, Brandt CC, Elias DA (2011) Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams. Appl Environ Microbiol 77:302. https://doi.org/10.1128/AEM.01715-10

    Article  CAS  PubMed  Google Scholar 

  46. Han Y, Perner M (2015) The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol 6:989. https://doi.org/10.3389/fmicb.2015.00989

    Article  PubMed  PubMed Central  Google Scholar 

  47. Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, Staudigel H, Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust. Nature 453:653–656. https://doi.org/10.1038/nature06899

    Article  CAS  PubMed  Google Scholar 

  48. Banchi E, Del Negro P, Celussi M, Malfatti F (2021) Sediment features and human activities structure the surface microbial communities of the Venice Lagoon. Front Mar Sci 8:762292. https://doi.org/10.3389/fmars.2021.762292

    Article  Google Scholar 

  49. Hoffmann K, Bienhold C, Buttigieg PL, Knittel K, Laso-Pérez R, Rapp JZ, Boetius A, Offre P (2020) Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities. ISME J 14:1042–1056. https://doi.org/10.1038/s41396-020-0588-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thamdrup B, Rosselló-Mora R, Amann R (2000) Microbial manganese and sulfate reduction in Black Sea shelf sediments. Appl Environ Microbiol 66:2888–2897. https://doi.org/10.1128/AEM.66.7.2888-2897.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jung Y-T, Lee J-S, Yoon J-H (2016) Gaetbulibacter aquiaggeris sp. nov., a member of the Flavobacteriaceae isolated from seawater. Int J Syst Evol Microbiol 66:1131–1137. https://doi.org/10.1099/ijsem.0.000845

    Article  CAS  PubMed  Google Scholar 

  52. Na H, Kim O-S, Yoon S-H, Kim Y, Chun J (2011) Comparative approach to capture bacterial diversity of coastal waters. J Microbiol 49:729–740. https://doi.org/10.1007/s12275-011-1205-z

    Article  PubMed  Google Scholar 

  53. Spring S, Lünsdorf H, Fuchs BM, Tindall BJ (2009) The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS ONE 4:e4866. https://doi.org/10.1371/journal.pone.0004866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoo J, Kim I-S, Kim S-H, Ekpeghere KI, Chang J-S, Park Y-I, Koh S-C (2017) Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium. Korean J Microbiol 53:83–96. https://doi.org/10.7845/kjm.2017.7038

    Article  Google Scholar 

  55. Chaudhary DK, Bajagain R, Jeong S-W, Kim J (2021) Effect of consortium bioaugmentation and biostimulation on remediation efficiency and bacterial diversity of diesel-contaminated aged soil. World J Microbiol Biotechnol 37:46. https://doi.org/10.1007/s11274-021-02999-3

    Article  CAS  PubMed  Google Scholar 

  56. Müller AK, Westergaard K, Christensen S, Sørensen SJ (2001) The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiol Ecol 36:11–19. https://doi.org/10.1111/j.1574-6941.2001.tb00821.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Environmental Industry & Technology Institute through the Aquatic Ecosystem Conservation Research Program funded by the Korea Ministry of Environment (MOE) (1485017197) and the National Institute of Environmental Research (NIER) funded by the MOE of the Republic of Korea (NIER-2020-04-02073).

Author information

Authors and Affiliations

Authors

Contributions

DKC and YH designed the study. DKC, KHK, and ML contributed to the experimental work, data analysis, and original draft preparation. HK contributed to data visualization and graphical work. DKC and YH reviewed and finalized the manuscript. YH supervised the project.

Corresponding author

Correspondence to Yongseok Hong.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Ethical Statement and Informed Consent

This study does not describe any experimental work related to humans or animals.

Consent to Participate

Not applicable.

Consent to Publication

All the authors have provided their consent for submission and publication of this manuscript in Current Microbiology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, D.K., Kim, K.H., Lee, M. et al. Insights into Bacterial Community Structure and Metabolic Diversity of Mercury-Contaminated Sediments from Hyeongsan River, Pohang, South Korea. Curr Microbiol 79, 156 (2022). https://doi.org/10.1007/s00284-022-02847-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02847-z

Navigation