Skip to main content
Log in

Effects of Growth Stage and Rearing Pattern on Pig Gut Microbiota

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Understanding the developmental period or the patterns of gut microbiota is important for nutritionists when designing a feed formula or adjusting a feeding strategy. The effects of growth stage or rearing pattern on pig gut microbiota have not been fully investigated. Herein, 39 fecal samples from pigs aged 3–9 months under two rearing patterns were collected to analyze the gut microbiome. Samples were clustered into three distinct groups, namely, early (3 months), middle (5 months), and late (7 and 9 months) stages, using principal coordinate analysis and analysis of similarities test. The rearing-pattern effects were very minimal, and no differences were observed in the alpha diversity [observed operational taxonomic units (OTUs) and Shannon index] of gut microbiota. From early and middle to late stage, Shannon index gradually decreased and OTUs gradually increased. Pigs at early stage were enriched with bacteria from family Prevotellaceae, including the genera Prevotella_9 and Prevotellaceae_NK3B31, whereas pigs at late stage were enriched with family Ruminococcaceae, including genera Ruminococcaceae_UCG-005 and Oscillospira. Pigs in the semi-free-grazing farm group were significantly enriched with bacteria from order Clostridiales. Growth stage better explained the changes in porcine gut microbiota than rearing patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used during the current study are available from the corresponding author on reasonable request. All data in this study are included in this manuscript and its supplementary information files.

Code Availability

All software in this study are accessed via a formal application process.

References

  1. Peled S, Livney YD (2021) The role of dietary proteins and carbohydrates in gut microbiome composition and activity: a review. Food Hydrocolloid 120:106911. https://doi.org/10.1016/j.foodhyd.2021.106911

    Article  CAS  Google Scholar 

  2. Verschuren LMG, Calus MPL, Jansman AJM, Bergsma R, Knol EF, Gilbert H et al (2018) Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex. J Anim Sci 96:1405–1418. https://doi.org/10.1093/jas/sky060

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seidel J, Valenzano DR (2018) The role of the gut microbiome during host ageing. F1000research 7:1086

    Article  Google Scholar 

  4. Frese SA, Parker K, Calvert CC, Mills DA (2015) Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3:28. https://doi.org/10.1186/s40168-015-0091-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guevarra RB, Hyun HS, Ho CJ, Bo-Ra K, Jiwon S, Hyung LJ et al (2018) The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. J Anim Sci Biotechno 9:54. https://doi.org/10.1186/s40104-018-0269-6

    Article  CAS  Google Scholar 

  6. Song M, Zhang F, Chen L, Yang Q, Su H, Yang X et al (2021) Dietary chenodeoxycholic acid improves growth performance and intestinal health by altering serum metabolic profiles and gut bacteria in weaned piglets. Anim Nutr 19:2405–6545. https://doi.org/10.1016/j.aninu.2020.07.011

    Article  Google Scholar 

  7. Wang J, Ji H, Wang S, Liu H, Zhang W, Zhang D et al (2018) Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front Microbiol 9:1953. https://doi.org/10.3389/fmicb.2018.01953

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang J, Zeng Y, Wang S, Liu H, Zhang D, Zhang W et al (2018) Swine-derived probiotic Lactobacillus plantarum inhibits growth and adhesion of Enterotoxigenic Escherichia coli and mediates host defense. Front Microbiol 9:1364. https://doi.org/10.3389/fmicb.2018.01364

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li Y, Zhu Y, Wei H, Chen Y, Shang H (2020) Study on the diversity and function of gut microbiota in pigs following long-term antibiotic and antibiotic-free breeding. Curr Microbiol 77:4114–4128. https://doi.org/10.1007/s00284-020-02240-8

    Article  CAS  PubMed  Google Scholar 

  10. Xiao L, Estellé Jordi Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q et al (2016) A reference gene catalogue of the pig guts microbiome. Nat Microbiol 1:16161. https://doi.org/10.1038/nmicrobiol.2016.161

    Article  CAS  PubMed  Google Scholar 

  11. Han GG, Lee JY, Jin GD, Park J, Choi YH, Kang SK et al (2018) Tracing of the fecal microbiota of commercial pigs at five growth stages from birth to shipment. SCI REP-UK 8:6012. https://doi.org/10.1038/s41598-018-24508-7

    Article  CAS  Google Scholar 

  12. Shin JH, Sim M, Lee JY, Shin DM (2016) Lifestyle and geographic insights into the distinct gut microbiota in elderly women from two different geographic locations. J Physiol Anthropol 35:31. https://doi.org/10.1186/s40101-016-0121-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York. Chapter 6, pp 4–12

  14. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  15. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R et al (2012) Quality-filtering vastly improves diversity estimates from illumina amplicon sequencing. Nat Methods 10:57–59. https://doi.org/10.1038/nmeth.2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G et al (2011) Chimeric 16s rRNA sequence formation and detection in sanger and 454-pyrosequenced pcr amplicons. Genome Res 21:494–504. https://doi.org/10.1101/gr.112730.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  21. Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al (2006) Greengenes, a chimera-checked 16s rRNA gene database and workbench compatible with arb. Appl Environ Microb 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  Google Scholar 

  22. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl Environ Microb 3:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  Google Scholar 

  23. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ et al (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16:90. https://doi.org/10.1186/s12866-016-0708-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Otoole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350:1214–1215. https://doi.org/10.1126/science.aac8469

    Article  CAS  Google Scholar 

  25. Niu Q, Li P, Hao S, Zhang Y, Kim SW, Li H et al (2015) Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. SCI REP-UK 5:9938. https://doi.org/10.1038/srep09938

    Article  CAS  Google Scholar 

  26. Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ et al (2011) Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol 153:124–133. https://doi.org/10.1016/j.vetmic.2011.05.021

    Article  PubMed  Google Scholar 

  27. Takagi T, Naito Y, Inoue R, Kashiwagi S, Uchiyama K, Mizushima K et al (2019) Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. J Gastroenterol 54:53–63. https://doi.org/10.1007/s00535-018-1488-5

    Article  PubMed  Google Scholar 

  28. Sangkyu K, Michal JS (2018) The gut microbiota and healthy aging: a mini-review. Gerontology 64:513–520. https://doi.org/10.1159/000490615

    Article  CAS  Google Scholar 

  29. Guevarra RB, Lee JH, Lee SH, Seok MJ, Kim DW, Kang BN et al (2019) Piglet gut microbial shifts early in life: causes and effects. J Anim Sci Biotechno 10:1. https://doi.org/10.1186/s40104-018-0308-3

    Article  Google Scholar 

  30. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massar S et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Arica. Proc Natl Acad Sci 107:14691–14696. https://doi.org/10.1073/pnas.1005963107

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gomez A, Petrzelkova K, Burns M, Yeoman C, Amato K, Vlckova K et al (2016) Gut microbiome of coexisting Baaka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep 14:2142–2153. https://doi.org/10.1016/j.celrep.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  32. Ardissone AN, De LCDM, Davis-Richardson AG, Rechcigl KT, Nan L, Drew JC et al (2014) Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS ONE 9(6):e101399. https://doi.org/10.1371/journal.pone.0101399

    Article  CAS  Google Scholar 

  33. Luo Y, Chen H, Yu B, He J, Zheng P, Mao X et al (2018) Dietary pea fibre alters the microbial community and fermentation with increase in fibre degradation-associated bacterial groups in the colon of pigs. J Anim Physiol An N 102:e254-261. https://doi.org/10.1111/jpn.12736

    Article  CAS  Google Scholar 

  34. Lionel B, Eric E, Kombila KC, Nicolas R, Franck P, Thomas F et al (2017) Evolution in fecal bacterial/viral composition in infants of two central African countries (Gabon and Republic of the Congo) during their first month of life. PLoS ONE 12:e0185569. https://doi.org/10.1371/journal.pone.0185569

    Article  CAS  Google Scholar 

  35. Biddle A, Stewart L, Blanchard J, Leschine S (2013) Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5:627–640. https://doi.org/10.3390/d5030627

    Article  Google Scholar 

  36. Menni C, Jackson MA, Pallister T, Steves CJ, Spector TD, Valdes AM (2017) Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int J Obes 41:1099–1105. https://doi.org/10.1038/ijo.2017.66

    Article  CAS  Google Scholar 

  37. Brulc JM, Antonopoulos DA, Berg Miller ME, Wilson MK, Yannarell AC, Dinsdale EA et al (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci 106:1948–1953. https://doi.org/10.1073/pnas.0806191105

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cameron EA, Maynard MA, Smith CJ, Smith TJ, Koropatkin NM, Martens EC (2012) Multidomain carbohydrate-binding proteins involved in bacteroides Thetaiotaomicron starch metabolism. J Biol Chem 287:34614–34625. https://doi.org/10.1074/jbc.M112.397380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alou MT, Lagier JC, Raoult D (2016) Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Hum Microbi J 1:3–11. https://doi.org/10.1016/j.humic.2016.09.001

    Article  Google Scholar 

  40. Rajoka MSR, Shi J, Mehwish HM, Jing Z, Qi L, Shao D et al (2017) Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Sci Hum Wellness 6:121–130. https://doi.org/10.1016/j.fshw.2017.07.003

    Article  Google Scholar 

  41. Heinritz SN, Weiss E, Eklund M, Aumiller T, Heyer CM, Messner S et al (2016) Impact of a high-fat or high-fiber diet on intestinal microbiota and metabolic markers in a pig model. Nutrients 8:317. https://doi.org/10.3390/nu8050317

    Article  CAS  PubMed Central  Google Scholar 

  42. Ye NF, Lü F, Shao LM, Godon JJ, He PJ (2007) Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes. J Appl Microbiol 103:1055–1065. https://doi.org/10.1111/j.1365-2672.2007.03321.x

    Article  CAS  PubMed  Google Scholar 

  43. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S et al (2016) Gut microbiota and extreme longevity. Curr Biol 26:1480–1485. https://doi.org/10.1016/j.cub.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  44. Contreras M, Magris M, Hidalgo G, Robert N, Anokhin AP, Heath AC et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tripathi CKM, Banga J, Mishra V (2012) Microbial heparin/heparan sulphate lyases: potential and applications. Appl Microbiol Biotechnol 94:307–321. https://doi.org/10.1007/s00253-012-3967-6

    Article  CAS  PubMed  Google Scholar 

  46. Kohl KD, Amaya J, Passement CA, Dearing MD, Mccue MD (2015) Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Eco 90:883–894. https://doi.org/10.1111/1574-6941.12442

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from Key R&D Projects in Zhejiang Province (Grant No. 2021C02007) and the Earmarked Fund for Modern Agro-industry Technology Research System (Grant No. CARS-35).

Author information

Authors and Affiliations

Authors

Contributions

KQ and ZX designed the research; KQ, XM, JW, and BD conducted the experiment; KQ analyzed the data and wrote the main manuscript text; ZX revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ziwei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Animal studies were conducted in accordance with the guidelines of the Zhejiang Farm Animal Welfare Council of China and approved by the ethics committee of Zhejiang Academy of Agricultural Sciences.

Consent to Participate

All authors have read the manuscript and agreed to participate.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, K., Men, X., Wu, J. et al. Effects of Growth Stage and Rearing Pattern on Pig Gut Microbiota. Curr Microbiol 79, 136 (2022). https://doi.org/10.1007/s00284-022-02828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02828-2

Navigation