Skip to main content
Log in

Transcriptome Analysis Reveals that MAPK Signaling Pathway Mediates Salt Tolerance of YMR253C ORF in Saccharomyces cerevisiae

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The YMR253C open reading frame encodes a membrane protein that is highly expressed in NaCl-resistant Saccharomyces cerevisiae mutants. Whether it mediates NaCl tolerance is unclear. By knocking out YMR253C in S. cerevisiae, we found that the salt tolerance of yeast was reduced, the integrity of the cell wall was impaired, and cell death was induced; transcriptome analysis further revealed that YMR253C gene knockout mediates significant changes of 1291 genes, and YMR253C mediates the regulation of MAPK signal pathways. Therefore, the transmembrane protein YMR253C may regulate the MAPK signaling pathway to regulate the salt stress of S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Locascio A, Andres-Colas N, Mulet JM, Yenush L (2019) Saccharomyces cerevisiae as a tool to investigate plant potassium and sodium transporters. Int J Mol Sci 20(9):2133

    Article  CAS  PubMed Central  Google Scholar 

  2. Kozela C, Johnston MO (2020) Effect of salt stress on mutation and genetic architecture for fitness components in Saccharomyces cerevisiae. G3 10:3831–3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berchtold E, Csaba G, Zimmer R (2019) YESdb: integrative analysis of environmental stress in yeast. Database. https://doi.org/10.1093/database/baz023

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ishii T, Funakoshi M, Kobayashi H, Sekiguchi T (2014) Yeast Irc22 is a novel Dsk2-interacting protein that is involved in salt tolerance. Cells 3:180–198

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gao Q, Liou LC, Ren Q, Bao X, Zhang Z (2014) Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA. Microbial Cell 1:94–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Szopinska A, Degand H, Hochstenbach JF, Nader J, Morsomme P (2011) Rapid response of the yeast plasma membrane proteome to salt stress. Mol Cell Proteom 10(M111):009589

    Google Scholar 

  7. Fuster DG, Alexander RT (2014) Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 466:61–76

    Article  CAS  PubMed  Google Scholar 

  8. Schnetkamp PP, Jalloul AH, Liu G, Szerencsei RT (2014) The SLC24 family of K(+)-dependent Na(+)-Ca(2)(+) exchangers: structure-function relationships. Curr Top Membr 73:263–287

    Article  CAS  PubMed  Google Scholar 

  9. Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8:437–449

    Article  CAS  PubMed  Google Scholar 

  10. Zuzuarregui A, del Olmo M (2004) Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection. Antonie Van Leeuwenhoek 85:271–280

    Article  CAS  PubMed  Google Scholar 

  11. Bean BD, Davey M, Conibear E (2017) Cargo selectivity of yeast sorting nexins. Traffic 18:110–122

    Article  CAS  PubMed  Google Scholar 

  12. Tekarslan-Sahin SH, Alkim C, Sezgin T (2018) Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering. Bosn J Basic Med Sci 18:55–65

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  14. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  15. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian Z, Wang C, Guo M, Liu X, Teng Z (2016) An improved method for functional similarity analysis of genes based on gene ontology. BMC Syst Biol 10:119

    Article  PubMed  PubMed Central  Google Scholar 

  17. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P et al (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605–D612

    Article  CAS  PubMed  Google Scholar 

  18. Liu R, Gao G, Bai Y, Hou L (2020) Fermentation of high-salt liquid-state soy sauce without any additives by inoculation of lactic acid bacteria and yeast. Food Sci Technol Int 26:642–654

    Article  CAS  PubMed  Google Scholar 

  19. Song Z, Song L, Shao Y, Tan L (2018) Degradation and detoxification of azo dyes by a salt-tolerant yeast Cyberlindnera samutprakarnensis S4 under high-salt conditions. World J Microbiol Biotechnol 34:131

    Article  PubMed  Google Scholar 

  20. Chin HL, Goh DL, Wang FS, Tay SKH, Heng CK, Donnini C, Baruffini E, Pines O (2019) A combination of two novel VARS2 variants causes a mitochondrial disorder associated with failure to thrive and pulmonary hypertension. J Mol Med 97:1557–1566

    Article  PubMed  Google Scholar 

  21. Zhang K, Huentelman MJ, Rao F, Sun EI, Corneveaux JJ, Schork AJ, Wei Z, Waalen J, Miramontes-Gonzalez JP, Hightower CM et al (2014) Genetic implication of a novel thiamine transporter in human hypertension. J Am Coll Cardiol 63:1542–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vastermark A, Almen MS, Simmen MW, Fredriksson R, Schioth HB (2011) Functional specialization in nucleotide sugar transporters occurred through differentiation of the gene cluster EamA (DUF6) before the radiation of Viridiplantae. BMC Evol Biol 11:123

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li G, Fu W, Deng Y, Zhao Y (2021) Role of calcium/calcineurin signalling in regulating intracellular reactive oxygen species homeostasis in Saccharomyces cerevisiae. Genes 12(9):1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herrera R, Alvarez MC, Gelis S, Kodedova M, Sychrova H, Kschischo M, Ramos J (2014) Role of Saccharomyces cerevisiae Trk1 in stabilization of intracellular potassium content upon changes in external potassium levels. Biochem Biophys Acta 1838:127–133

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Li S, Wang J, Liu Y, Deng Y (2021) Roles of high osmolarity glycerol and cell wall integrity pathways in cadmium toxicity in Saccharomyces cerevisiae. Int J Mol Sci 22(12):6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee YM, Kim E, An J, Lee Y, Choi E, Choi W, Moon E, Kim W (2017) Dissection of the HOG pathway activated by hydrogen peroxide in Saccharomyces cerevisiae. Environ Microbiol 19:584–597

    Article  CAS  PubMed  Google Scholar 

  27. Chou S, Huang L, Liu H (2004) Fus3-regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast. Cell 119:981–990

    Article  CAS  PubMed  Google Scholar 

  28. Blackwell E, Kim HJ, Stone DE (2007) The pheromone-induced nuclear accumulation of the Fus3 MAPK in yeast depends on its phosphorylation state and on Dig1 and Dig2. BMC Cell Biol 8:44

    Article  PubMed  PubMed Central  Google Scholar 

  29. Winters MJ, Pryciak PM (2018) Analysis of the thresholds for transcriptional activation by the yeast MAP kinases Fus3 and Kss1. Mol Biol Cell 29:669–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aluru M, McKinney T, Venero AL, Choudhury S, Torres M (2017) Mitogen-activated protein kinases, Fus3 and Kss1, regulate chronological lifespan in yeast. Aging 9:2587–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was mainly funded by the National Natural Science Foundation of China and the National Natural Science Foundation of Yunnan Province.

Funding

Supported by Grants from the National Natural Science Foundation of China (NSFC; Grant No. 81560502, 81960354), the National Natural Science Foundation of Yunnan Province (Grant No. 2019FE001-094, 202101AY070001-012), the Talent Project of Yunnan Province (2019HB024). The authors acknowledge the editors and reviewers for their positive and constructive comments and suggestions on our study.

Author information

Authors and Affiliations

Authors

Contributions

LL and JM conceived and designed the research. YZ and ML conducted the experiments and analyzed the data. JD and CB analyzed the data.

Corresponding authors

Correspondence to Jiaqing Ma or Lechun Lyu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, M., Deng, J. et al. Transcriptome Analysis Reveals that MAPK Signaling Pathway Mediates Salt Tolerance of YMR253C ORF in Saccharomyces cerevisiae. Curr Microbiol 79, 126 (2022). https://doi.org/10.1007/s00284-022-02818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02818-4

Navigation