Skip to main content
Log in

The MreA Metal-Binding Sites C40, H65, and C69 Play a Critical Role in the Metal Tolerance of Pseudomonas putida KT2440

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Metal-binding proteins occur in the cytosol of most eubacteria. The hypothetical metal responsive protein MreA (PP-2969 gene; NreA) seems responsible for zinc, chromium, cadmium accumulation, and metal ion homeostasis. However, there is a lack of definitive evidence regarding the specific metal-binding sites of MreA protein. The present study aimed to identify putative metal-binding regions for MreA. In silico analysis revealed that amino acids C40, H65, and C69 (CHC region) seem critical for metal-protein interactions. We created site-directed mutants (SDM’s) of MreA for interacted amino acids to validate in silico results. The differential scanning fluorimetry (DSF) and atomic absorption spectroscopy (AAS) showed that SDM strains of MreA protein curtailed metal accumulation compared to the wild types indicating C40, H65, and C69 amino acids are critical for metal binding. Thus, we report potential implications for MreA-bioengineered strains of Pseudomonas putida KT2440 for metal ion homeostasis by alleviating metal toxicity in the biological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

The data and material are available with corresponding author for sharing with research community.

Code Availability

Not applicable.

References

  1. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  PubMed  Google Scholar 

  2. Raghu G, Balaji V, Venkateswaran G, Rodrigue A, Maruthi Mohan P (2008) Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes. Appl Microbiol Biotechnol 81:571–578. https://doi.org/10.1007/s00253-008-1741-6

    Article  CAS  PubMed  Google Scholar 

  3. Gogada R, Singh SS, Lunavat SK, Pamarthi MM, Rodrigue A, Vadivelu B, Phanithi PB, Gopala V, Apte SK (2015) Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Appl Microbiol Biotechnol 99:9203–9213. https://doi.org/10.1007/s00253-015-6761-4

    Article  CAS  PubMed  Google Scholar 

  4. Wood JM (1984) Evolutionary aspects of metal ion transporters through cell membranes. CRC Press, New York

    Google Scholar 

  5. Rodrigue A, Effantin G, Mandrand-Berthelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187:2912–2916. https://doi.org/10.1128/JB.187.8.2912-2916.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ray P, Girard V, Gault M, Job C, Bonneu M, Mandrand-Berthelot MA, Singh SS, Job D, Rodrigue A (2013) Pseudomonas putida KT2440 response to nickel or cobalt induced stress by quantitative proteomics. Metallomics 5:68–79. https://doi.org/10.1039/c2mt20147j

    Article  CAS  PubMed  Google Scholar 

  7. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808. https://doi.org/10.1046/j.1462-2920.2002.00366.x

    Article  CAS  PubMed  Google Scholar 

  8. Haritha A, Sagar KP, Tiwari A, Kiranmayi P, Rodrigue A, Mohan PM, Singh SS (2009) MrdH, a novel metal resistance determinant of Pseudomonas putida KT2440, is flanked by metal-inducible mobile genetic elements. J Bacteriol 191:5976–5987. https://doi.org/10.1128/JB.00465-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belda E, van Heck RG, Jose Lopez-Sanchez M, Cruveiller S, Barbe V, Fraser C, Klenk HP, Petersen J, Morgat A, Nikel PI et al (2016) The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol 18:3403–3424. https://doi.org/10.1111/1462-2920.13230

    Article  CAS  PubMed  Google Scholar 

  10. Liu T, Ramesh A, Ma Z, Ward SK, Zhang L, George GN, Talaat AM, Sacchettini JC, Giedroc DP (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3:60–68. https://doi.org/10.1038/nchembio844

    Article  CAS  PubMed  Google Scholar 

  11. Sakamoto K, Agari Y, Agari K, Kuramitsu S, Shinkai A (2010) Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8. Microbiology (Reading) 156:1993–2005. https://doi.org/10.1099/mic.0.037382-0

    Article  Google Scholar 

  12. Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–524. https://doi.org/10.1002/1097-0290(20001205)70:5%3c518::aid-bit6%3e3.0.co;2-5

    Article  CAS  PubMed  Google Scholar 

  13. Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338. https://doi.org/10.1128/AEM.67.11.5335-5338.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gold B, Deng H, Bryk R, Vargas D, Eliezer D, Roberts J, Jiang X, Nathan C (2008) Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4:609–616. https://doi.org/10.1038/nchembio.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reyes-Caballero H, Campanello GC, Giedroc DP (2011) Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys Chem 156:103–114. https://doi.org/10.1016/j.bpc.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  16. Liu T, Reyes-Caballero H, Li C, Scott RA, Giedroc DP (2007) Multiple metal binding domains enhance the Zn(II) selectivity of the divalent metal ion transporter AztA. Biochemistry 46:11057–11068. https://doi.org/10.1021/bi7006367

    Article  CAS  PubMed  Google Scholar 

  17. Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron J 51:173–212. https://doi.org/10.1016/S0065-2113(08)60593-3

    Article  CAS  Google Scholar 

  18. Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73. https://doi.org/10.1016/s0167-7799(00)01534-1

    Article  CAS  PubMed  Google Scholar 

  19. Pattanayak B, Padhi S, Dhal NK (2014) Genetic engineering to express metal binding proteins and peptides: implications for bioremediation. Biolife 2:442–451

    Google Scholar 

  20. Canovas D, Cases I, de Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256. https://doi.org/10.1111/j.1462-2920.2003.00463.x

    Article  CAS  PubMed  Google Scholar 

  21. Hu N, Zhao B (2007) Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiol Lett 267:17–22. https://doi.org/10.1111/j.1574-6968.2006.00505.x

    Article  CAS  PubMed  Google Scholar 

  22. Hassan MT, van der Lelie D, Springael D, Romling U, Ahmed N, Mergeay M (1999) Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238:417–425. https://doi.org/10.1016/s0378-1119(99)00349-2

    Article  CAS  PubMed  Google Scholar 

  23. Lee SW, Glickmann E, Cooksey DA (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67:1437–1444. https://doi.org/10.1128/AEM.67.4.1437-1444.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perron K, Caille O, Rossier C, Van Delden C, Dumas JL, Kohler T (2004) CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 279:8761–8768. https://doi.org/10.1074/jbc.M312080200

    Article  CAS  PubMed  Google Scholar 

  25. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252-258. https://doi.org/10.1093/nar/gku340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Remmert M, Biegert A, Hauser A, Soding J (2011) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9:173–175. https://doi.org/10.1038/nmeth.1818

    Article  CAS  PubMed  Google Scholar 

  28. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. https://doi.org/10.1002/elps.1150181505

    Article  CAS  PubMed  Google Scholar 

  29. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321. https://doi.org/10.1021/jm051197e

    Article  CAS  PubMed  Google Scholar 

  30. Passerini A, Lippi M, Frasconi P (2011) MetalDetector v2.0: predicting the geometry of metal binding sites from protein sequence. Nucleic Acids Res 39:W288-292. https://doi.org/10.1093/nar/gkr365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82:488–492. https://doi.org/10.1073/pnas.82.2.488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Catty D, Lowe JA, Gell PG (1975) Mechanism of allotype suppression in the rabbit. Transplant Rev 27:157–183. https://doi.org/10.1111/j.1600-065x.1975.tb00188.x

    Article  CAS  PubMed  Google Scholar 

  33. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386. https://doi.org/10.1385/1-59259-192-2:365

    Article  CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  35. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  36. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354. https://doi.org/10.1073/pnas.76.9.4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gogada R, Yadav N, Liu J, Tang S, Zhang D, Schneider A, Seshadri A, Sun L, Aldaz CM, Tang DG et al (2013) Bim, a proapoptotic protein, up-regulated via transcription factor E2F1-dependent mechanism, functions as a prosurvival molecule in cancer. J Biol Chem 288:368–381. https://doi.org/10.1074/jbc.M112.386102

    Article  CAS  PubMed  Google Scholar 

  38. Yadav N, Gogada R, O’Malley J, Gundampati RK, Jayanthi S, Hashmi S, Lella R, Zhang D, Wang J, Kumar R et al (2020) Molecular insights on cytochrome c and nucleotide regulation of apoptosome function and its implication in cancer. Biochim Biophys Acta Mol Cell Res 1867:118573. https://doi.org/10.1016/j.bbamcr.2019.118573

    Article  CAS  PubMed  Google Scholar 

  39. Venkateswerlu G, Sastry KS (1973) Interrelationships in trace-element metabolism in metal toxicities in a cobalt-resistant strain of Neurospora crassa. Biochem J 132:673–680. https://doi.org/10.1042/bj1320673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sowjanya TN, Mohan PM (2009) A calcium binding protein from cell wall of Neurospora crassa. J Basic Microbiol 49:371–376. https://doi.org/10.1002/jobm.200800304

    Article  CAS  PubMed  Google Scholar 

  41. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221. https://doi.org/10.1038/nprot.2007.321

    Article  CAS  PubMed  Google Scholar 

  42. Hillenkamp F, Karas M (1990) Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol 193:280–295. https://doi.org/10.1016/0076-6879(90)93420-p

    Article  CAS  PubMed  Google Scholar 

  43. Rossbach S, Wilson TL, Kukuk ML, Carty HA (2000) Elevated zinc induces siderophore biosynthesis genes and a zntA-like gene in Pseudomonas fluorescens. FEMS Microbiol Lett 191:61–70. https://doi.org/10.1111/j.1574-6968.2000.tb09320.x

    Article  CAS  PubMed  Google Scholar 

  44. Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG, Rensing C (2001) NreB from Achromobacter xylosoxidans 31A Is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183:2803–2807. https://doi.org/10.1128/JB.183.9.2803-2807.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hahm DHYMJ, Ko WM, Lee EH, Lee HJ, Shim I, Kim HY (2002) Characterization of the nickel resistance gene from Legionella pneumophila: Attenuation of nickel resistance by ppk (polyphosphate kinase) disruption in Escherichia coli. J Microbiol Biotechnol 12:114–120

    CAS  Google Scholar 

  46. Grosso-Becerra MV, Santos-Medellin C, Gonzalez-Valdez A, Mendez JL, Delgado G, Morales-Espinosa R, Servin-Gonzalez L, Alcaraz LD, Soberon-Chavez G (2014) Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 15:318. https://doi.org/10.1186/1471-2164-15-318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bleriot C, Effantin G, Lagarde F, Mandrand-Berthelot MA, Rodrigue A (2011) RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli. J Bacteriol 193:3785–3793. https://doi.org/10.1128/JB.05032-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang C, Vernon R, Lange O, Tyka M, Baker D (2010) Prediction of structures of zinc-binding proteins through explicit modeling of metal coordination geometry. Protein Sci 19:494–506. https://doi.org/10.1002/pro.327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang X, Jin D, Zhou L, Wu L, Qi L, Li C, An W, Chen Y (2014) Draft genome sequence of halotolerant polycyclic aromatic hydrocarbon-degrading Pseudomonas bauzanensis strain W13Z2. Genome Announc. https://doi.org/10.1128/genomeA.01049-14

    Article  PubMed  PubMed Central  Google Scholar 

  50. Weinel C, Nelson KE, Tummler B (2002) Global features of the Pseudomonas putida KT2440 genome sequence. Environ Microbiol 4:809–818. https://doi.org/10.1046/j.1462-2920.2002.00331.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate this manuscript to Late Prof P. Maruthi Mohan. The authors thank Dr. Jens Klockgether, Clinical Research Group—OE 6711, Ped. Pneumology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany for providing the wild-type strain. The research work was supported by the Department of Science and technology [INSPIRE Faculty Award (DST) IFA12-LSPA-11to GR] and UGC-SAP DRS-II.

Funding

The research work was supported by the Department of Science and technology [INSPIRE Faculty Award (DST) IFA12-LSPA-11to GR] and [UGC-SAP DRS-II to SSS].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [RG] and [SSS]; methodology: [RG] [SKL], [AQM], and [RM]; formal analysis and investigation: [SKL], [RG], [AQM], [RM], and [SSS]; writing—original draft preparation: [SKL], [RG], and [AQM]; writing—review and editing: [RG], [AQM], [VPN], [P-BP], [RM], and [SSS]; funding acquisition, resources, and supervision: [RG] and [SSS].

Corresponding authors

Correspondence to Surya Satyanarayana Singh or Raghu Gogada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The animal immunization experiments were conducted following the approval from the University Ethical committee (383/01/a/CPCSEA) and comply with the laws of India.

Consent to Participate

Not applicable.

Consent for Publication

The authors declare that they are giving consent for publication of this data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunavat, S.K., Singh, S.S., Mohammed, A.Q. et al. The MreA Metal-Binding Sites C40, H65, and C69 Play a Critical Role in the Metal Tolerance of Pseudomonas putida KT2440. Curr Microbiol 79, 142 (2022). https://doi.org/10.1007/s00284-022-02804-w

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02804-w

Navigation