Skip to main content

Advertisement

Log in

Direct Molecular Detection of Drug-Resistant Tuberculosis from Transported Bio-Safe Dried Sputum on Filter-Paper

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In 2019, amongst half a million new rifampicin-resistant tuberculosis (TB) cases, 78% were multi drug-resistant TB (MDR-TB). Access to rapid and Universal-Drug susceptibility testing (DST) to patients in remote areas is a major challenge to combat drug-resistant TB. To overcome this challenge, we had recently reported the development of ‘TB Concentration & Transport kit’ for bio-safe ambient temperature transport of dried sputum on filter-paper (Trans-Filter). The present study was conducted to evaluate the utility of DNA extracted from sputum on Trans-Filter in a Multiplex PCR-based sequencing assay (Mol-DSTseq) for diagnosing drug-resistant TB. The developed Mol-DSTseq assays were standardized on Mycobacterium tuberculosis clinical isolates (n = 98) and further validated on DNA extracted from sputum on Trans-Filter (n = 100). Using phenotypic DST as gold standard, the Mol-DSTseq assay showed 100% (95% Confidence Interval [CI] 79.4–100%) and 73.3% (95% CI 54.1–87.7%) sensitivity for detecting rifampicin and isoniazid resistance with a specificity of 85.1% (95% CI 66.2–95.8%) and 100% (95% CI:82.3–100%), respectively. For fluoroquinolones and aminoglycosides, the Mol-DSTseq assay showed a sensitivity of 78.5% (95% CI 49.2–95.3%) and 66.6% (95% CI 9.4–99.1%) with a specificity of 88.2% (95% CI 72.5–96.7%) and 100% (95% CI 93.1–100%), respectively. The Mol-DSTseq assays exhibited a high concordance of ~ 83–96% (κ value: 0.65–0.81) with phenotypic DST for all drugs. In conclusion, the ‘TB Concentration and Transport kit’ was compatible with Mol-DSTseq assays and has the potential to provide ‘Universal-DST’ to patients residing in distant areas in high burden countries, like India for early initiation of anti-tubercular treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO (2021) Global Tuberculosis Report

  2. WHO (2020) WHO consolidated guidelines on tuberculosis; Module 3: diagnosis – rapid diagnostics for tuberculosis detection

  3. Cao Y, Parmar H, Gaur RL, Lieu D, Raghunath S, Via N, Battaglia S, Cirillo DM, Denkinger C, Georghiou S, Kwiatkowski R, Persing D, Alland D, Chakravorty S (2021) Xpert MTB/XDR: a 10-color reflex assay suitable for point-of-care settings to detect isoniazid, fluoroquinolone, and second-line-injectable-drug resistance directly from mycobacterium tuberculosis-positive sputum. J Clin Microbiol. https://doi.org/10.1128/JCM.02314-20

    Article  PubMed  PubMed Central  Google Scholar 

  4. WHO (2020) Global Tuberculosis Report

  5. Meehan CJ, Goig GA, Kohl TA, Verboven L, Dippenaar A, Ezewudo M, Farhat MR, Guthrie JL, Laukens K, Miotto P, Ofori-Anyinam B, Dreyer V, Supply P, Suresh A, Utpatel C, van Soolingen D, Zhou Y, Ashton PM, Brites D, Cabibbe AM, de Jong BC, de Vos M, Menardo F, Gagneux S, Gao Q, Heupink TH, Liu Q, Loiseau C, Rigouts L, Rodwell TC, Tagliani E, Walker TM, Warren RM, Zhao Y, Zignol M, Schito M, Gardy J, Cirillo DM, Niemann S, Comas I, Van Rie A (2019) Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol 17(9):533–545. https://doi.org/10.1038/s41579-019-0214-5

    Article  CAS  PubMed  Google Scholar 

  6. Iketleng T, Lessells R, Dlamini MT, Mogashoa T, Mupfumi L, Moyo S, Gaseitsiwe S, de Oliveira T (2018) Mycobacterium tuberculosis next-generation whole genome sequencing: opportunities and challenges. Tuberc Res Treat 2018:1298542. https://doi.org/10.1155/2018/1298542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. WHO (2021) Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance

  8. NTEP (2020) India TB Report-National Tuberculosis Elimination Programme Annual Report.

  9. Anthwal D, Lavania S, Gupta RK, Verma A, Myneedu VP, Sharma PP, Verma H, Malhotra V, Gupta A, Gupta NK, Sarin R, Haldar S, Tyagi JS (2019) Development and evaluation of novel bio-safe filter paper-based kits for sputum microscopy and transport to directly detect Mycobacterium tuberculosis and associated drug resistance. PLoS ONE 14(8):e0220967. https://doi.org/10.1371/journal.pone.0220967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anthwal DGR, Singhal R, Bhalla M, Verma AK, Khayyam KU et al (2021) Compatibility of a novel filter paper-based bio-safe sputum transport kit with Line Probe Assay for diagnosing drug-resistant tuberculosis: a single-site evaluation study. ERJ open research. https://doi.org/10.1183/23120541.00137-2021

    Article  PubMed  PubMed Central  Google Scholar 

  11. WHO (2021) Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis, 2020

  12. Singhal R, Anthwal D, Kumar G, Sah G, Salfinger M, Choudhury S, Arora J, Bhalla M, Myneedu VP, Sarin R, Haldar S (2020) Genotypic characterization of “inferred” rifampin mutations in GenoType MTBDRplus assay and its association with phenotypic susceptibility testing of Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 96(4):114995. https://doi.org/10.1016/j.diagmicrobio.2020.114995

    Article  CAS  PubMed  Google Scholar 

  13. GLI (2014) Mycobacteriology laboratory manual

  14. Kim H, Seo M, Park YK, Yoo JI, Lee YS, Chung GT, Ryoo S (2013) Evaluation of MGIT 960 system for the second-line drugs susceptibility testing of mycobacterium tuberculosis. Tuberc Res Treat 2013:108401. https://doi.org/10.1155/2013/108401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. WHO (2018) Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis

  16. Zimenkov DV, Antonova OV, Kuz’min AV, Isaeva YD, Krylova LY, Popov SA, Zasedatelev AS, Mikhailovich VM, Gryadunov DA (2013) Detection of second-line drug resistance in Mycobacterium tuberculosis using oligonucleotide microarrays. BMC Infect Dis 13:240. https://doi.org/10.1186/1471-2334-13-240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xie YL, Chakravorty S, Armstrong DT, Hall SL, Via LE, Song T, Yuan X, Mo X, Zhu H, Xu P, Gao Q, Lee M, Lee J, Smith LE, Chen RY, Joh JS, Cho Y, Liu X, Ruan X, Liang L, Dharan N, Cho SN, Barry CE 3rd, Ellner JJ, Dorman SE, Alland D (2017) Evaluation of a rapid molecular drug-susceptibility test for tuberculosis. N Engl J Med 377(11):1043–1054. https://doi.org/10.1056/NEJMoa1614915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79(1):3–29. https://doi.org/10.1054/tuld.1998.0002

    Article  CAS  PubMed  Google Scholar 

  19. Seifert M, Catanzaro D, Catanzaro A, Rodwell TC (2015) Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS ONE 10(3):e0119628. https://doi.org/10.1371/journal.pone.0119628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernard C, Veziris N, Brossier F, Sougakoff W, Jarlier V, Robert J, Aubry A (2015) Molecular diagnosis of fluoroquinolone resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 59(3):1519–1524. https://doi.org/10.1128/AAC.04058-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miotto P, Tessema B, Tagliani E, Chindelevitch L, Starks AM, Emerson C, Hanna D, Kim PS, Liwski R, Zignol M, Gilpin C, Niemann S, Denkinger CM, Fleming J, Warren RM, Crook D, Posey J, Gagneux S, Hoffner S, Rodrigues C, Comas I, Engelthaler DM, Murray M, Alland D, Rigouts L, Lange C, Dheda K, Hasan R, Ranganathan UDK, McNerney R, Ezewudo M, Cirillo DM, Schito M, Koser CU, Rodwell TC (2017) A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J. https://doi.org/10.1183/13993003.01354-2017

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nachappa SA, Neelambike SM, Amruthavalli C, Ramachandra NB (2018) Detection of first-line drug resistance mutations and drug-protein interaction dynamics from tuberculosis patients in South India. Microb Drug Resist 24(4):377–385. https://doi.org/10.1089/mdr.2017.0048

    Article  CAS  PubMed  Google Scholar 

  23. Herrera-Leon L, Molina T, Saiz P, Saez-Nieto JA, Jimenez MS (2005) New multiplex PCR for rapid detection of isoniazid-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 49(1):144–147. https://doi.org/10.1128/AAC.49.1.144-147.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang YP, Chen Y, Xiao TY, Xia Q, Liu HC, Zhao XQ, Zeng CY, Zhao LL, Wan KL (2017) Applied multiplex allele specific PCR to detect second-line drug resistance among multidrug-resistant tuberculosis in China. Tuberculosis 107:1–4. https://doi.org/10.1016/j.tube.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  25. Rowneki M, Aronson N, Du P, Sachs P, Blakemore R, Chakravorty S, Levy S, Jones AL, Trivedi G, Chebore S, Addo D, Byarugaba DK, Njobvu PD, Wabwire-Mangen F, Erima B, Ramos ES, Evans CA, Hale B, Mancuso JD, Alland D (2020) Detection of drug resistant Mycobacterium tuberculosis by high-throughput sequencing of DNA isolated from acid fast bacilli smears. PLoS ONE 15(5):e0232343. https://doi.org/10.1371/journal.pone.0232343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perez-Osorio AC, Boyle DS, Ingham ZK, Ostash A, Gautom RK, Colombel C, Houze Y, Leader BT (2012) Rapid identification of mycobacteria and drug-resistant Mycobacterium tuberculosis by use of a single multiplex PCR and DNA sequencing. J Clin Microbiol 50(2):326–336. https://doi.org/10.1128/JCM.05570-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SH acknowledges the Intramural grant (71/2-Edu-16/4465) from PGIMER, Chandigarh. DA and RKG are thankful for Senior Research Fellowship through Indian Council of Medical Research (ICMR), Government of India. JST acknowledges the award of Senior Scientist Fellowship by the National Academy of Sciences (India).

Funding

The work was supported by the Intramural Grant (71/2-Edu-16/4465) from PGIMER, Chandigarh.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SH; Methodology: DA, SJ, SH; Formal analysis: DA, SJ; Investigation and data curation: DA, SJ, RKG, RS, AKV, MB, VPM, RS; writing—original draft preparation: DA, SJ, SH; writing—review and editing: DA, SJ, RKG, RS, AKV, MB, VPM, RS, SC, JST, SH; funding acquisition: SH; resources: SH; supervision: SC, JST, SH.

Corresponding author

Correspondence to Sagarika Haldar.

Ethics declarations

Conflict of interest

DA, RKG, AKV, VPM, RS, JST and SH are joint inventors in an Indian Provisional Patent application named ‘Apparatus and method for processing a sample for rapid diagnosis of tuberculosis and safe transport of bacteria’ (Patent application number- 201811042155).

Ethical Approval

All archived samples were used after ethical clearance from the Institutional Ethics Committee at Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh (PGIMER: INT/IEC/2018/1456).

Consent to Publication

All authors have read and agreed to publish this version of the manuscript.

Data Availability

The data used or analyzed during the present study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2022_2780_MOESM1_ESM.tif

Supplementary Fig. 1. Limit of Detection (LOD) and electropherograms of respective target genes of (A) Triplex MDR-TB assay; and (B) Duplex XDR-TB assay. 106 to 10 indicates M. tuberculosis genome equivalents, L stands for DNA Ladder and red circle highlights the LOD of respective assay (TIF 22431 kb)

284_2022_2780_MOESM2_ESM.tif

Supplementary Fig. 2 Workflow of sample analysis (Mol-DSTseq assay vs. MGIT) for drug resistance detection. *M. tb: Mycobacterium tuberculosis, confirmed by AFB-positive smear and SD BIOLINE TB Ag MPT64 kit Rapid test (in MGIT-culture) (TIF 19823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anthwal, D., Jamwal, S., Gupta, R.K. et al. Direct Molecular Detection of Drug-Resistant Tuberculosis from Transported Bio-Safe Dried Sputum on Filter-Paper. Curr Microbiol 79, 110 (2022). https://doi.org/10.1007/s00284-022-02780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02780-1

Navigation