Skip to main content
Log in

The Impact of Fast Microbiology in Intensive Care Units in the Era of Antibiotic Resistance: An Observational Retrospective Study

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The increasing prevalence of multi-drug-resistant bacteria responsible for bloodstream infections (BSIs) makes therapeutic choices progressively more complex. Fast microbiology quickly detects the presence of pathogens and clinically relevant determinants of antibiotic resistance, offering the potential for early administration of antibiotics. In this retrospective observational study, we comparatively evaluated the performances of FilmArray and the current standard method using blood samples collected from intensive care unit (ICU) patients with suspected BSI. A full agreement with the standard was observed in 97/102 samples (95.1 ± 4.2%), a mismatch in 3/102 samples (2.9 ± 3.2%) and detection failure in 2/102 cases (1.96 ± 2.7%). Statistical analysis demonstrated a near-perfect/perfect level of agreement between the two methods, with an overall degree of agreement of 95%. The high performance demonstrated by the FilmArray could allow a “watch and wait” approach helping clinicians in decision-making processes related to choice and initiation of the antimicrobial therapy, thus avoiding ineffective and excessive use of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availability

Data archiving is not mandated but data will be made available on reasonable request.

Code Availability

Not applicable.

References

  1. Wisplinghoff H, Bischoff T, Tallent SM et al (2004) Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317. https://doi.org/10.1086/421946

    Article  PubMed  Google Scholar 

  2. Magill SS, Edwards JR, Bamberg W et al (2014) Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370:1198–1208. https://doi.org/10.1056/NEJMoa1306801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garrouste-Orgeas M, Timsit JF, Tafflet M et al (2006) Excess risk of death from intensive care unit-acquired nosocomial bloodstream infections: a reappraisal. Clin Infect Dis 42:1118–1126. https://doi.org/10.1086/500318

    Article  PubMed  Google Scholar 

  4. Prowle JR, Echeverri JE, Ligabo EV et al (2011) Acquired bloodstream infection in the intensive care unit: incidence and attributable mortality. Crit Care 15:R100–R100. https://doi.org/10.1186/cc10114

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laupland KB, Zygun DA, Davies HD et al (2002) Population-based assessment of intensive care unit-acquired bloodstream infections in adults: Incidence, risk factors, and associated mortality rate. Crit Care Med 30:2462–2467. https://doi.org/10.1097/00003246-200211000-00010

    Article  PubMed  Google Scholar 

  6. Barnett AG, Page K, Campbell M et al (2013) The increased risks of death and extra lengths of hospital and ICU stay from hospital-acquired bloodstream infections: a case–control study. BMJ Open 3:e003587–e003587. https://doi.org/10.1136/bmjopen-2013-003587

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shankar PR (2016) Book review: Tackling drug-resistant infections globally. Arch Pharm Pract 7:110–111. https://doi.org/10.4103/2045-080X.186181

    Article  Google Scholar 

  8. Abbasi Montazeri E, Khosravi AD, Saki M et al (2020) Prevalence of extended-spectrum beta-lactamase-producing enterobacteriaceae causing bloodstream infections in cancer patients from Southwest of Iran. Infect Drug Resist 13:1319–1326. https://doi.org/10.2147/IDR.S254357

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cassini A, Monnet DL, Mancarella G et al (2017) ECDC country visit to Italy to discuss antimicrobial resistance issues 9-13 January 2017. Stockholm ECDC. https://doi.org/10.2900/23589

    Article  Google Scholar 

  10. Zilberberg MD, Shorr AF, Micek ST et al (2014) Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care 18:596. https://doi.org/10.1186/s13054-014-0596-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Micek ST, Welch EC, Khan J et al (2011) Resistance to empiric antimicrobial treatment predicts outcome in severe sepsis associated with gram-negative bacteremia. J Hosp Med 6:405–410. https://doi.org/10.1002/jhm.899

    Article  PubMed  Google Scholar 

  12. De Waele JJ, Dhaese S (2019) Antibiotic stewardship in sepsis management: toward a balanced use of antibiotics for the severely ill patient. Expert Rev Anti Infect Ther 17:89–97. https://doi.org/10.1080/14787210.2019.1568239

    Article  CAS  PubMed  Google Scholar 

  13. Mongodi S, Via G, Girard M et al (2016) Lung ultrasound for early diagnosis of ventilator-associated pneumonia. Chest 149:969–980. https://doi.org/10.1016/j.chest.2015.12.012

    Article  PubMed  Google Scholar 

  14. Menichetti F, Falcone M, Lopalco P et al (2018) The GISA call to action for the appropriate use of antimicrobials and the control of antimicrobial resistance in Italy. Int J Antimicrob Agents 52:127–134. https://doi.org/10.1016/j.ijantimicag.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  15. Mangioni D, Viaggi B, Giani T et al (2019) Diagnostic stewardship for sepsis: the need for risk stratification to triage patients for fast microbiology workflows. Future Microbiol 14:169–174. https://doi.org/10.2217/fmb-2018-0329

    Article  CAS  PubMed  Google Scholar 

  16. Lamy B, Dargère S, Arendrup MC et al (2016) How to optimize the use of blood cultures for the diagnosis of bloodstream infections? A State-of-the Art Front Microbiol. https://doi.org/10.3389/fmicb.2016.00697

    Article  PubMed  Google Scholar 

  17. bioMérieux Diagnostics (2021) BioFire FilmArray Blood Culture Identification (BCID) Panel. Instruction Booklet. https://www.biomerieux-diagnostics.com/biofire-bcid-panel. Accessed 17 Sep 2021

  18. Dellinger RP, Schorr CA, Levy MM (2017) A users’ guide to the 2016 Surviving Sepsis Guidelines. Intensive Care Med 43:299–303. https://doi.org/10.1007/s00134-017-4681-8

    Article  PubMed  Google Scholar 

  19. ISO 20776–1:2019 (2019) Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices — Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapid. https://www.iso.org/standard/70464.html. Accessed 1 Jun 2019

  20. Testing TEC on AS (2020) Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0. http://www.eucast.org. Accessed 1 Jan 2020

  21. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159. https://doi.org/10.2307/2529310

    Article  CAS  PubMed  Google Scholar 

  22. Orsini J, Mainardi C, Muzylo E et al (2012) Microbiological profile of organisms causing bloodstream infection in critically ill patients. J Clin Med Res. https://doi.org/10.4021/jocmr1099w

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ahmadkhosravi N, Khosravi AD, Asareh Zadegan Dezfuli A et al (2021) Study of aerobic and anaerobic bacterial profile of nosocomial infections and their antibiotic resistance in a referral center, Southwest Iran: A three year cross-sectional study. PLoS ONE 16:e0259512. https://doi.org/10.1371/journal.pone.0259512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Messacar K, Parker SK, Todd JK, Dominguez SR (2017) Implementation of rapid molecular infectious disease diagnostics: the role of diagnostic and antimicrobial stewardship. J Clin Microbiol 55:715–723. https://doi.org/10.1128/JCM.02264-16

    Article  PubMed  PubMed Central  Google Scholar 

  25. Green J., Clark A., Carter C., et al (2019) Mitigation of Nucleic Acid Contamination Present in Blood Culture Media Formulations with an Enhanced Molecular Diagnostic Test. https://docs.biofiredx.com/wp-content/uploads/DX-RES-048468-PST-01-FilmArray-BCID2-Panel-ASM-Microbe-2019-Green-2019.pdf. Accessed 22 Jun 2019

  26. Spina A, Kerr KG, Cormican M et al (2015) Spectrum of enteropathogens detected by the FilmArray GI Panel in a multicentre study of community-acquired gastroenteritis. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2015.04.007

    Article  PubMed  Google Scholar 

  27. McAdam AJ (2020) Enterobacteriaceae ? Enterobacterales ? What should we call enteric gram-negative bacilli? A Micro-Comic Strip J Clin Microbiol. https://doi.org/10.1128/JCM.01888-19

    Article  PubMed  Google Scholar 

  28. Rule R, Paruk F, Becker P et al (2021) Diagnostic accuracy of the BioFire FilmArray blood culture identification panel when used in critically ill patients with sepsis. J Microbiol Methods. https://doi.org/10.1016/j.mimet.2021.106303

    Article  PubMed  Google Scholar 

  29. Altun O, Almuhayawi M, Ullberg M, Ozenci V (2013) Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol. https://doi.org/10.1128/JCM.01835-13

    Article  PubMed  PubMed Central  Google Scholar 

  30. Oberhettinger P, Zieger J, Autenrieth I et al (2020) Evaluation of two rapid molecular test systems to establish an algorithm for fast identification of bacterial pathogens from positive blood cultures. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-020-03828-5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jaton K, Ninet B, Bille J, Greub G (2010) False-negative PCR result due to gene polymorphism: the example of Neisseria meningitidis. J Clin Microbiol 48:4590–4591. https://doi.org/10.1128/JCM.01766-10

    Article  PubMed  PubMed Central  Google Scholar 

  32. Buccambuso M, Corrin Cook, Hoge J, et al (2014) Analytical Studies for FilmArray®: A Rapid and Easy-to-Use Platform for Molecular Detection of Respiratory, Blood, and Gastrointestinal Pathogens. https://docs.biofiredx.com/wp-content/uploads/2016/03/Buccambuso_et_al._ASM._2014._March._GI_Panel.pdf. Accessed 16 Sep 2021

  33. Peker N, Couto N, Sinha B, Rossen JW (2018) Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2018.05.007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.M., B.V., G.V. and S.R. were involved in the conception and design of the study. M.M. and L.B. were involved in the analysis and interpretation of the data. M.M., S.F. and C.S-C. were involved in the drafting of the paper. B.V., G.V. and S.R. were involved in revising the critically for intellectual content. Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Corresponding author

Correspondence to Mirko Muzzi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest or competing interest to declare.

Ethical Approval

Ethical approval has been respected.

Consent to Participate

All the authors approve the final version of the manuscript and agree to be accountable for all aspects of the work.

Consent for Publication

All the authors approved the version to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 kb)

Supplementary file2 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzzi, M., Viaggi, B., Fabbri, S. et al. The Impact of Fast Microbiology in Intensive Care Units in the Era of Antibiotic Resistance: An Observational Retrospective Study. Curr Microbiol 79, 79 (2022). https://doi.org/10.1007/s00284-022-02773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02773-0

Navigation