Skip to main content

Advertisement

Log in

Playgrounds in City of Pushchino with Different Types of Coating as Reservoir of Antibiotic-Resistant Strains of Pseudomonas spp.

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, we investigated antibiotic-resistant microorganisms isolated by the direct plating method from 6 playgrounds in the city of Pushchino, Moscow Region, with different types of coating: sand, soil with sand, grass and a modern playground coating made of pressed rubber crumb. According to the results of the study, sand is the cleanest type of coating, both in terms of the total count of cultivated microorganisms (8 × 105/g of substrate) and in terms of the content of resistant strains. The most contaminated both in terms of the total count of cultivated microorganisms (1.2–1.9 × 109/g of substrate) and in terms of the content of antibiotic-resistant strains was the coating of pressed rubber crumb. We isolated 65 antibiotic-resistant strains of fluorescent pseudomonads. Nine Pseudomonas strains were found to contain antibiotic resistance plasmids (one belongs to P-1 incompatibility group, seven to IncP-7 and one to unidentified incompatibility group). For the first time, we discovered a conjugative plasmid pD4A-46 conferring tetracycline resistance and belonging to the P-7 incompatibility group. Taking into account the results obtained under this study, it can be recommended to periodically treat the crumb rubber coating with non-toxic antiseptics, i.e. hydrogen peroxide or chlorhexidine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. World Health Organization (2001) WHO global strategy for containment of antimicrobial resistance 2001. World Health Organization, Geneva, pp 1–105

    Google Scholar 

  2. Andrews TM (2003) Current concepts in antibiotic resistance. Curr Opin Otolaryngol Head Neck Surg 11:409–415. https://doi.org/10.1097/00020840-200312000-00001

    Article  PubMed  Google Scholar 

  3. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197(8):1079–1081. https://doi.org/10.1086/533452

    Article  PubMed  Google Scholar 

  4. Nishimura T, Hattori K, Inoue A, Ishii T, Yumoto T, Tsukahara K, Nakao A, Ishihara S, Nakayama S (2017) Bacteremia or pseudobacteremia? Review of Pseudomonas fluorescens infections. World J Emerg Med 8:151–154. https://doi.org/10.5847/wjem.j.1920-8642.2017.02.013

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence JR, Larsson DGJ, McEwen SA, Ryan JJ, Schönfeld J, Silley P, Snape JR, Van den Eede C, Topp E (2013) Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect 121:993–1001. https://doi.org/10.1289/ehp.1206316

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kudinova AG, Soina VS, Maksakova SA, Petrova MA (2019) Basic antibiotic resistance of bacteria isolated from different biotopes. Microbiology 88:739–746. https://doi.org/10.1134/S0026261719050084

    Article  CAS  Google Scholar 

  7. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  8. Kosheleva IA, Izmalkova TY, Sazonova OI, Siunova TV, Gafarov AB, Sokolov SL, Boronin AM (2021) Antibiotic-resistant microorganisms and multiple drug resistance determinants in Pseudomonas bacteria from the Pushchino wastewater treatment facilities. Microbiology 90:187–197. https://doi.org/10.1134/S0026261721020077

    Article  CAS  Google Scholar 

  9. De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P (2011) Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst Appl Microbiol 34:20–29. https://doi.org/10.1016/j.syapm.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  10. Götz A, Pukall R, Smit E, Tietze E, Prager R, Tschäpe H, van Elsas JD, Smalla K (1996) Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62:2621–2628. https://doi.org/10.1128/AEM.62.7.2621-2628.1996

    Article  PubMed  PubMed Central  Google Scholar 

  11. Greated A, Thomas C (1999) Reviews in microbiology—less is more. Microbiology 145:3003–3003. https://doi.org/10.1099/00221287-145-11-3003

    Article  Google Scholar 

  12. Izmalkova TY, Sazonova OI, Sokolov SL, Kosheleva IA, Boronin AM (2005) The P-7 incompatibility group plasmids responsible for biodegradation of naphthalene and salicylate in fluorescent pseudomonads. Microbiol 74:290–295. https://doi.org/10.1007/s11021-005-0065-0

    Article  CAS  Google Scholar 

  13. Dombek PE, Johnson LK, Zimmerley ST, Sadowsky MJ (2000) Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl Environ Microbiol 66:2572–2577. https://doi.org/10.1128/AEM.66.6.2572-2577.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohapatra BR, Broersma K, Mazumder A (2007) Comparison of five rep-PCR genomic fingerprinting methods for differentiation of fecal Escherichia coli from humans, poultry and wild birds. FEMS Microbiol Lett 277(1):98–106. https://doi.org/10.1111/j.1574-6968.2007.00948.x

    Article  CAS  PubMed  Google Scholar 

  15. Almansour KS, Arisco NJ, Woo MK, Young AS, Adamkiewicz G, Hart JE (2019) Playground lead levels in rubber, soil, sand, and mulch surfaces in Boston. PLoS ONE 14:e0216156. https://doi.org/10.1371/journal.pone.0216156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tarafdar A, Oh M-J, Nguyen-Phuong Q, Kwon J-H (2020) Profiling and potential cancer risk assessment on children exposed to PAHs in playground dust/soil: a comparative study on poured rubber surfaced and classical soil playgrounds in Seoul. Environ Geochem Health 42:1691–1704. https://doi.org/10.1007/s10653-019-00334-2

    Article  CAS  PubMed  Google Scholar 

  17. Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev 28:337–418. https://doi.org/10.1128/CMR.00117-14

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jatsenko T, Tover A, Tegova R, Kivisaar M (2010) Molecular characterization of Rifr mutations in Pseudomonas aeruginosa and Pseudomonas putida. Mutat Res Mol Mech Mutagen 683:106–114. https://doi.org/10.1016/j.mrfmmm.2009.10.015

    Article  CAS  Google Scholar 

  19. Goldstein BP (2014) Resistance to rifampicin: a review. J Antibiot 67:625–630. https://doi.org/10.1038/ja.2014.107

    Article  CAS  Google Scholar 

  20. Medernach RL, Logan LK (2018) The growing threat of antibiotic resistance in children. Infect Dis Clin North Am 32:1–17. https://doi.org/10.1016/j.idc.2017.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303:298–304. https://doi.org/10.1016/j.ijmm.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  22. Partridge SR, Kwong SM, Firth N, Jensen SO (2018) Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31:e00088. https://doi.org/10.1128/CMR.00088-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boronin AM (1992) Diversity of Pseudomonas plasmids: To what extent? FEMS Microbiol Lett 100:461–467. https://doi.org/10.1111/j.1574-6968.1992.tb14077.x

    Article  CAS  PubMed  Google Scholar 

  24. Popowska M, Krawczyk-Balska A (2013) Broad-host-range IncP-1 plasmids and their resistance potential. Front Microbiol 4:44. https://doi.org/10.3389/fmicb.2013.00044

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shintani M, Yano H, Habe H, Omori T, Yamane H, Tsuda M, Nojiri H (2006) Characterization of the replication, maintenance, and transfer features of the IncP-7 plasmid pCAR1, which carries genes involved in carbazole and dioxin degradation. Appl Environ Microbiol 72(5):3206–3216. https://doi.org/10.1128/AEM.72.5.3206-3216.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeng L, Zhan Z, Hu L, Jiang X, Zhang Y, Feng J, Gao B, Zhao Y, Yang W, Yang H, Yin Z, Zhou D (2019) Genetic characterization of a blaVIM–24-carrying IncP-7β plasmid p1160-VIM and a blaVIM–4—harboring integrative and conjugative element Tn6413 from clinical Pseudomonas aeruginosa. Front Microbiol 10:213. https://doi.org/10.3389/fmicb.2019.00213

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bennett PM (2008) Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153(S1):347–357. https://doi.org/10.1038/sj.bjp.0707607

    Article  CAS  Google Scholar 

  28. Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203. https://doi.org/10.1016/j.femsle.2005.02.034

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Ministry of Sciences and High Education, Number AAAA-A16-116062110071-4.

Author information

Authors and Affiliations

Authors

Contributions

TI and OS designed the study. TI drafted the manuscript. TI, OS interpreted the data. TI, OS, ED, SS and AG performed the laboratory experiments. All authors revised the manuscript and approved the version to be published.

Corresponding author

Correspondence to Tatiana Yu. Izmalkova.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izmalkova, T.Y., Sazonova, O.I., Dymova, E.A. et al. Playgrounds in City of Pushchino with Different Types of Coating as Reservoir of Antibiotic-Resistant Strains of Pseudomonas spp.. Curr Microbiol 79, 80 (2022). https://doi.org/10.1007/s00284-022-02768-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02768-x

Navigation