Skip to main content
Log in

Analysis of Biodegradation of the Synthetic Pyrethroid Cypermethrin by Beauveria bassiana

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Entomopathogenic fungi like Beauveria bassiana play a crucial role in natural control of arthropod pests which are being used in Integrated Pest Management programs. Assessing the compatibility of biological and chemical counterparts used in IPM programs is essential to achieve successful results in pest management. Behavior of four isolates of B. bassiana (ITCC 913, ARSEF 2860, ARSEF 1166, and ARSEF 3041) was tested in the presence of the pyrethroid insecticide cypermethrin. Spore germination and growth bioassays were conducted to assess the impact of cypermethrin on germination and growth. Though growth was not totally inhibited, there was retardation in the germination of spores and growth of the mycelium. Under this condition, ITCC 913 showed highest tolerance toward cypermethrin. Further analysis of the culture crude extracts by GC–MS revealed degradation of the insecticide by B. bassiana and putative intermediates of the degradation pathway were identified. This study reveals the potential of the entomopathogen B. bassiana in degradation of the pyrethroid insecticide cypermethrin. In conclusion, this potentiality of the studied fungus may help in the IPM strategies and find its role in degradation of such chemical pesticide compounds for utilization as a biodegradation agent further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tanada Y, Kaya HK (1993) Insect Pathology. Academic press, San Diego, p 666

    Google Scholar 

  2. Nardini L, Blanford S, Coetzee M, Koekemoer LL (2014) Effect of Beauveriabassiana infection on detoxification enzyme transcription in pyrethroid resistant Anophelesarabiensis: a preliminary study. Trans R Soc Trop Med Hyg 108:221–227. https://doi.org/10.1093/trstmh/tru021

    Article  CAS  PubMed  Google Scholar 

  3. Oliveira CND, Neves PMOJ, Kawazoe LS (2003) Compatibility between the entomopathogenic fungus Beauveria bassiana and insecticides used in coffee plantations. Sci Agric 60:663–667. https://doi.org/10.1590/S0103-90162003000400009

    Article  Google Scholar 

  4. Jin K, Zhang Y, Luo Z, Xiao Y, Fan Y, Wu D, Pei Y (2008) An improved method for Beauveria bassiana transformation using phosphinothricinacetlytransferase and green fluorescent protein fusion gene as a selectable and visible marker. Biotech Lett 30:1379–1383. https://doi.org/10.1007/s10529-008-9713-6

    Article  CAS  Google Scholar 

  5. Liu B, Zhang Y, Chen L (2005) The dynamical behaviors of a Lotka-Volterra predator–prey model concerning integrated pest management. Nonlinear Anal Real World Appl 6:227–243. https://doi.org/10.1016/j.nonrwa.2004.08.001

    Article  Google Scholar 

  6. Todorova SI, Côté JC, Martel P, Coderre D (1994) Heterogeneity of two Beauveria bassiana strains revealed by biochemical tests protein profiles and bio-assays of Leptinotarsa decemlineata (Col: Chrysomelidae) and Coleomegillamacultatalengi (Col: Coccinellidae) larvae. Entomophaga 39:159–169. https://doi.org/10.1007/BF02372354

    Article  Google Scholar 

  7. Humber RA (1991) Fungal pathogens of aphids. In: Peters DC, Webster JA, Chlouber CS (eds) Aphid-plant interactions: populations to molecules. Oklahoma State Univ Press, Stillwater, OK, pp 45–56

    Google Scholar 

  8. Malo AR (1993) Estudiosobre la compatibilidad del hongoBeauveria bassiana (Bals) Vuill con formulacionescomerciales de fungicidas e insecticidas. RevistaColombiana de Entomologia 19:151–158

    Google Scholar 

  9. Zhuang R, Chen H, Yao J, Li Z, Burnet JE, Choi MM (2011) Impact of beta-cypermethrin on soil microbial community associated with its bioavailability: a combined study by isothermal micro calorimetry and enzyme assay techniques. J Hazard Mater 189:323–328. https://doi.org/10.1016/j.jhazmat.2011.02.034

    Article  CAS  PubMed  Google Scholar 

  10. Soderlund DM, Bloomquist JR (1989) Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol 34:77–96

    Article  CAS  Google Scholar 

  11. Elliott M, Farnham AW, Janes NF, Johnson DM, Pulman DA (1980) The pyrethrins and related compounds; part XXIV: synthesis 13C-nuclear magnetic resonance spectra and insecticidal activity of cycloalkyl analogues of fenvalerate. Pestic Sci 11:513–525. https://doi.org/10.1002/ps.2780110509

    Article  CAS  Google Scholar 

  12. Katsuda Y (1999) Development of and future prospects for pyrethroid chemistry. Pestic Sci 55:775–782. https://doi.org/10.1002/(SICI)1096-9063(199908)55:8%3c775::AID-PS27%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  13. Maund SJ, Travis KZ, Hendley P, Giddings JM, Solomon KR (2001) Probabilistic risk assessment of cotton pyrethroids: V Combining landscape-level exposures and ecotoxicological effects data to characterize risks. Environ Toxicol Chem 20:687–692. https://doi.org/10.1002/etc.5620200330

    Article  CAS  PubMed  Google Scholar 

  14. Chen S, Lin Q, Xiao Y, Deng Y, Chang C, Zhong G, Hu M, Zhang LH (2013) Monooxygenase a novel beta-cypermethrin degrading enzyme from Streptomyces sp. PLoS ONE 8:e75450. https://doi.org/10.1371/journal.pone.0075450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dorman DC, Beasley VR (1991) Neurotoxicology of pyrethrin and the pyrethroid insecticides. Vet Hum Toxicol 33:238–243

    CAS  PubMed  Google Scholar 

  16. Cuthbertson AGS, Blackburn LF, Northing P, Luo W, Cannon RJC, Walters KFA (2010) Chemical compatibility testing of the entomopathogenic fungus Lecanicilliummuscarium to control Bemisiatabaci in glasshouse environment. Int J Environ Sci Technol 7:405–409. https://doi.org/10.1007/BF03326150

    Article  CAS  Google Scholar 

  17. Zhang C, Jia L, Wang S, Qu J, Li K, Xu L, Shi Y, Yan Y (2010) Biodegradation of beta-cypermethrin by two Serratiaspp with different cell surface hydrophobicity. Biores Technol 101:3423–3429. https://doi.org/10.1016/j.biortech.2009.12.083

    Article  CAS  Google Scholar 

  18. Feo ML, Eljarrat E, Barceló D (2010) Determination of pyrethroid insecticides in environmental samples TrAC. Trends Anal Chem 29:692–705. https://doi.org/10.1016/j.trac.2010.03.011

    Article  CAS  Google Scholar 

  19. Yang L, Chen S, Hu M, Hao W, Geng P, Zhang Y (2011) Biodegradation of carbofuran by Pichia anomala strain HQ-C-01 and its application for bioremediation of contaminated soils. Biol Fertil Soils 47:917. https://doi.org/10.1007/s00374-011-0602-0

    Article  CAS  Google Scholar 

  20. Cycoń M, Żmijowska A, Wójcik M, Piotrowska-Seget Z (2013) Biodegradation and bioremediation potential of diazinon-degrading Serratiamarcescens to remove other organophosphorus pesticides from soils. J Environ Manag 117:7–16. https://doi.org/10.1016/j.jenvman.2012.12.031

    Article  CAS  Google Scholar 

  21. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59. https://doi.org/10.1016/S0920-5861(99)00102-9

    Article  CAS  Google Scholar 

  22. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol, C 6:186–205. https://doi.org/10.1016/j.jphotochemrev.2005.09.001

    Article  CAS  Google Scholar 

  23. Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90:1471–1483. https://doi.org/10.1007/s00253-011-3136-3

    Article  CAS  PubMed  Google Scholar 

  24. Lin S, Chen H, Hu Y, Haq U, Yang L, Li H (2011) Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. Int J Environ Sci Technol 8:45–56

    Article  CAS  Google Scholar 

  25. Sharma A, Gangola S, Khati P, Kumar G, Srivastava A (2016) Novel pathway of cypermethrin biodegradation in a Bacillus sp strain SG2 isolated from cypermethrin-contaminated agriculture field. 3 Biotech 6:45. https://doi.org/10.1007/s13205-016-0372-3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pitt JJ (2009) Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev 30:19

    PubMed  PubMed Central  Google Scholar 

  27. Karasek FW, Clement RE (2012) Basic gas chromatography-mass spectrometry: principles and techniques. Elsevier

    Google Scholar 

  28. Martins C, Silva J, Alencar R, Silva P, Cividanes J, Duarte T, Agostini T, Polanczyk A (2014) Interactions between the entomopathogenic fungi Beauveria bassiana (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiellarapae (Hymenoptera: Braconidae) on Myzuspersicae (Hemiptera: Aphididae). J Econ Entomol 107:933–938. https://doi.org/10.1603/EC13542

    Article  Google Scholar 

  29. Ying SH, Feng MG (2006) Medium components and culture conditions affect the thermotolerance of aerial conidia of fungal biocontrol agent Beauveria bassiana. Lett Appl Microbiol 43(3):331–335

    Article  CAS  Google Scholar 

  30. Boucias DG, Pendland JC, Latge JP (1988) Nonspecific factors involved in attachment of entomopathogenic deuteromycetes to host insect cuticle. Appl Environ Microbiol 54:795–1805

    Article  Google Scholar 

  31. Challa M, Sanivada K (2014) Compatibility of Beauveria bassiana (Bals.) Vuill isolates with selected insecticides and fungicides at agriculture spray tank dose. Innovare J Agric Sci 2:7–10

    Google Scholar 

  32. Mwamburi A, Laing D, Miller M (2015) Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Braz J Microbiol 46:67–74. https://doi.org/10.1590/S1517-838246120131077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirsch J, Galidevara S, Strohmeier S, Devi KU, Reineke A (2013) Effects on diversity of soil fungal community and fate of an artificially applied Beauveria bassiana strain assessed through 454 pyrosequencing. Microb Ecol 66:608–620. https://doi.org/10.1007/s00248-013-0249-5

    Article  CAS  PubMed  Google Scholar 

  34. Luz C, Fargues J (1997) Temperature and moisture requirements for conidial germination of an isolate of Beauveria bassiana pathogenic to Rhodnius prolixus. Mycopathologia 138:117–125. https://doi.org/10.1023/A:1006803812504

    Article  CAS  PubMed  Google Scholar 

  35. Wraight SP, Carruthers RI, Jaronski ST, Bradley CA, Garza CJ, Galaini-Wraight S (2000) Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomycesfumosoroseus for microbial control of the silverleaf whitefly Bemisia argentifolii. Biol Control 17:203–217. https://doi.org/10.1006/bcon.1999.0799

    Article  Google Scholar 

  36. Silva RAD, Quintela ED, Mascarin GM, Barrigossi JAF, Lião LM (2013) Compatibility of conventional agrochemicals used in rice crops with the entomopathogenic fungus Metarhiziumanisopliae. Sci Agric 70:152–160. https://doi.org/10.1590/S0103-90162013000300003

    Article  Google Scholar 

  37. Mohan MC, Reddy NP, Devi UK, Kongara R, Sharma HC (2007) Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Sci Tech 17:1059–1069. https://doi.org/10.1080/09583150701714551

    Article  Google Scholar 

  38. Yin LB, Zhao LZ, Liu Y, Zhang DY, Zhang SB, Xiao K (2013) Isolation and characterization of cypermethrin degrading bacteria screened from contaminated soil. Biodegrad Hazard Spec Prod 14:1. https://doi.org/10.5772/56339

    Article  CAS  Google Scholar 

  39. Muthabathula P, Suneetha S, Grace R (2018) Genome-wide codon usage bias analysis in Beauveria bassiana. Bioinformation 14:580–586. https://doi.org/10.6026/97320630014580

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gentz MC, Murdoch G, King GF (2010) Tandem use of selective insecticides and natural enemies for effective reduced-risk pest management. Biol Control 52:208–215. https://doi.org/10.1016/j.biocontrol.2009.07.012

    Article  Google Scholar 

  41. Sain SK, Monga D, Kumar R, Nagrale DT, Hiremani NS, Kranthi S (2019) Compatibility of entomopathogenic fungi with insecticides and their efficacy for IPM of Bemisia tabaci in cotton. J Pestic Sci 44:97–105. https://doi.org/10.1584/jpestics.D18-067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dahlberg KR, Etten JLV (1982) Physiology and biochemistry of fungal sporulation. Annu Rev Phytopathol 20:281–301

    Article  CAS  Google Scholar 

  43. Wulandari NF, To-Anun C, Hyde KD, Duong LM, De Gruyter J, Meffert JP, Groenewald JZ, Crous PW (2009) Phyllostictacitriasianaspnov the cause of citrus tan spot of Citrus maxima in Asia. Fungal Divers 34:23–39

    Google Scholar 

  44. Ozcan S, Dover J, Rosenwald AG, Wölfl S, Johnston M (1996) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci 93:12428–12432. https://doi.org/10.1073/pnas.93.22.12428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lengai GM, Muthomi JW, Mbega ER (2020) Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci Afr 7:e00239. https://doi.org/10.1016/j.sciaf.2019.e00239

    Article  Google Scholar 

  46. Heidari R, Devonshire AL, Campbell BE, Dorrian SJ, Oakeshott JG, Russell RJ (2005) Hydrolysis of pyrethroids by carboxylesterases from Luciliacuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochem Mol Biol 35:597–609. https://doi.org/10.1016/j.ibmb.2005.02.018

    Article  CAS  PubMed  Google Scholar 

  47. Gao J, Ellis LB, Wackett LP (2010) The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res 38:D488–D491. https://doi.org/10.1093/nar/gkp771

    Article  CAS  PubMed  Google Scholar 

  48. Cycoń M, Piotrowska-Seget Z (2016) Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: a review. Front Microbiol 7:1463. https://doi.org/10.3389/fmicb.2016.01463

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sundaram S, Das MT, Thakur IS (2013) Biodegradation of cypermethrin by Bacillus sp in soil microcosm and in-vitro toxicity evaluation on human cell line. Int Biodeterior Biodegrad 77:39–44. https://doi.org/10.1016/j.ibiod.2012.11.008

    Article  CAS  Google Scholar 

  50. Raj A, Reddy MK, Chandra R (2007) Identification of low molecular weight aromatic compounds by gas chromatography–mass spectrometry (GC–MS) from kraft lignin degradation by three Bacillus sp. Int Biodeterior Biodegrad 59:292–296. https://doi.org/10.1016/j.ibiod.2006.09.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. K. Uma Devi (Retd.), Department of Botany, Andhra University, for providing laboratory facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PM involved in design and carried out the experiments, statistical analysis, and preparation of the manuscript. SB participated in proof reading of the manuscript.

Corresponding author

Correspondence to Prajna Muthabathula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 332 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthabathula, P., Biruduganti, S. Analysis of Biodegradation of the Synthetic Pyrethroid Cypermethrin by Beauveria bassiana. Curr Microbiol 79, 46 (2022). https://doi.org/10.1007/s00284-021-02744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-021-02744-x

Navigation