Skip to main content
Log in

Characterization and Antidermatophyte Activity of Henna Extracts: A Promising Therapy for Humans and Animals Dermatophytoses

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Dermatophytoses representing a major global health problem and dermatophyte species with reduced susceptibility to antifungals are increasingly reported. Therefore, we investigated for the first time the antidermatophyte activity and phytochemical properties of the sequential extracts of the Egyptian privet Henna (Lawsonia inermis) leaves. Total phenolic content (TPC), total flavonoids (TF), and antioxidant activity of chloroform, diethyl ether, acetone, ethanol 80%, and aqueous extracts were evaluated. The antifungal activity of henna leaves extracts (HLE) toward 30 clinical dermatophytes isolates, including Trichophyton mentagrophytes, Microsporum canis, and T. rubrum, was determined. Morphological changes in hyphae were investigated using scanning electron microscopy (SEM) analysis. Following the polarity of ethanol and acetone, they exhibited distinct efficiency for the solubility and extraction of polyphenolic polar antioxidants from henna leaves. Fraxetin, lawsone, and luteolin-3-O-glucoside were the major phenolic compounds of henna leaves, as assessed using high-performance liquid chromatography analysis. A high and significant positive correlation was found between TPC, TF, the antioxidants, and the antidermatophyte activities of HLE. Acetone and ethanol extracts exhibited the highest antifungal activity toward the tested dermatophyte species with minimum inhibitory concentration (MIC) ranges 12.5–37.5 and 25–62.5 µg/mL, respectively. Structural changes including collapsing, distortion, inflating, crushing of hyphae with corrugation of walls, and depressions on hyphal surfaces were observed in SEM analysis for dermatophyte species treated with MICs of griseofulvin, acetone, and ethanol extracts. In conclusion, acetone and ethanolic extracts of henna leaves with their major constituent fraxetin exhibited effective antifungal activity toward dermatophyte species and may be developed as an alternative for dermatophytosis treatment. These findings impart a useful insight into the development of an effective and safe antifungal agent for the treatment of superficial fungal infections caused by dermatophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available within the article.

References

  1. Lopes G, Pinto E, Salgueiro L (2017) Natural products: an alternative to conventional therapy for dermatophytosis? Mycopathologia 182:143–167. https://doi.org/10.1007/S11046-016-0081-9

    Article  CAS  PubMed  Google Scholar 

  2. Frymus T, Gruffydd-Jones T, Pennisi MG et al (2013) Dermatophytosis in cats: ABCD guidelines on prevention and management. J Feline Med Surg 15:598–604. https://doi.org/10.1177/1098612X13489222

    Article  PubMed  Google Scholar 

  3. Taha M, Zaghloul AB (2018) Superficial fungal infections. Pigment ethnic skin and imported dermatoses. Springer, Cham, pp 37–51

    Chapter  Google Scholar 

  4. Tartor YH, Abo Hashem ME, Enany S (2019) Towards a rapid identification and a novel proteomic analysis for dermatophytes from human and animal dermatophytosis. Mycoses 62:1116–1126. https://doi.org/10.1111/myc.12998

    Article  CAS  PubMed  Google Scholar 

  5. Nweze EI, Eke I (2016) Dermatophytosis in northern Africa. Mycoses 59:137–144. https://doi.org/10.1111/myc.12447

    Article  CAS  PubMed  Google Scholar 

  6. White TC, Findley K, Dawson TL et al (2014) Fungi on the skin: dermatophytes and malassezia. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a019802

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moriello KA, Coyner K, Paterson S, Mignon B (2017) Diagnosis and treatment of dermatophytosis in dogs and cats: clinical consensus guidelines of the world association for veterinary dermatology. Vet Dermatol 28:266–268. https://doi.org/10.1111/vde.12440

    Article  PubMed  Google Scholar 

  8. Bond R (2010) Superficial veterinary mycoses. Clin Dermatol 28:226–236. https://doi.org/10.1016/j.clindermatol.2009.12.012

    Article  PubMed  Google Scholar 

  9. Łagowski D, Gnat S, Nowakiewicz A, Osińska M (2020) Comparison of in vitro activities of 11 antifungal agents against Trichophyton verrucosum isolates associated with a variety hosts and geographical origin. Mycoses 63:294–301. https://doi.org/10.1111/myc.13042

    Article  CAS  PubMed  Google Scholar 

  10. Taghipour S, Shamsizadeh F, Pchelin I et al (2020) Emergence of terbinafine resistant Trichophyton mentagrophytes in Iran, harboring mutations in the squalene epoxidase gene. Infect Drug Resist 13:845–850. https://doi.org/10.2147/IDR.S246025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ayatollahi Mousavi SA, Kazemi A (2015) In vitro and in vivo antidermatophytic activities of some Iranian medicinal plants. Med Mycol 53:852–859. https://doi.org/10.1093/mmy/myv032

    Article  PubMed  Google Scholar 

  12. Rahmoun N, Boucherit-Atmani Z, Benabdallah M et al (2013) Antimicrobial activities of the henna extract and some synthetic naphthoquinones derivatives. Am J Med Biol Res 1:16–22. https://doi.org/10.12691/ajmbr-1-1-3

    Article  CAS  Google Scholar 

  13. Tartor YH, El-Neshwy WM, Merwad AMA et al (2020) Ringworm in calves: risk factors, improved molecular diagnosis, and therapeutic efficacy of an Aloe vera gel extract. BMC Vet Res 16:421. https://doi.org/10.1186/s12917-020-02616-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gozubuyuk GS, Aktas E, Yigit N (2014) An ancient plant Lawsonia inermis (henna): determination of in vitro antifungal activity against dermatophytes species. J Mycol Med 24:313–318. https://doi.org/10.1016/j.mycmed.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  15. Agarwal P, Alok S, Verma A (2014) An update on ayurvedic herb Henna (Lawsonia Inermis L.): a review. Int J Pharm Sci Res 5:330. https://doi.org/10.13040/IJPSR.0975-8232.5(2).330-39

    Article  CAS  Google Scholar 

  16. Mohammedi Z, Atik F (2011) Impact of solvent extraction type on total polyphenols content and biological activity from tamarix aphylla (l.) Karst. Int J Pharm Bio Sci 2:609–615

    CAS  Google Scholar 

  17. Wagini NH, Soliman AS, Abbas MS, Hanafy YA, Badawy EM (2014) Phytochemical analysis of Nigerian and Egyptian henna (Lawsonia Inermis L.) Leaves using TLC, FTIR and GCMS. Plant 2:27–32. https://doi.org/10.11648/j.plant.20140203.11

    Article  Google Scholar 

  18. Singh DK, Cheema HS, Saxena A et al (2017) Fraxetin and ethyl acetate extract from Lawsonia inermis L. ameliorate oxidative stress in P. berghei infected mice by augmenting antioxidant defence system. Phytomedicine 36:262–272. https://doi.org/10.1016/j.phymed.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  19. Campbell CK, Johnson EM, Philpot CM, Warnock DW (1996) The dermatophytes, in. Identification of pathogenic fungi. PHLS, London, pp 26–68

    Google Scholar 

  20. Abo El-Maati MF, Mahgoub SA, Labib SM et al (2016) Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur J Integr Med 8:494–504. https://doi.org/10.1016/j.eujim.2016.02.006

    Article  Google Scholar 

  21. Škerget M, Kotnik P, Hadolin M et al (2005) Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem 89:191–198. https://doi.org/10.1016/j.foodchem.2004.02.025

    Article  CAS  Google Scholar 

  22. AOAC (2000) The official methods of analysis, 17th edn. Association of Official Analytical Chemists, Maryland

    Google Scholar 

  23. Ordoñez AAL, Gomez JD, Vattuone MA, Lsla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97:452–458. https://doi.org/10.1016/J.FOODCHEM.2005.05.024

    Article  Google Scholar 

  24. Sakakibara H, Honda Y, Nakagawa S et al (2003) Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agric Food Chem 51:571–581. https://doi.org/10.1021/jf020926l

    Article  CAS  PubMed  Google Scholar 

  25. Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in Licorice root their relative astringency and radical scavenging effects. Chem Chem Pharm Bull 36:2090–2097. https://doi.org/10.1248/cpb.36.2090

    Article  CAS  Google Scholar 

  26. Gülçin I, Küfrevioǧlu ÖI, Oktay M, Büyükokuroǧlu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215. https://doi.org/10.1016/j.jep.2003.09.028

    Article  PubMed  Google Scholar 

  27. Dastmalchi K, Damien Dorman HJ, Laakso I, Hiltunen R (2007) Chemical composition and antioxidative activity of Moldavian balm (Dracocephalum moldavica L.) extracts. LWT 40:1655–1663. https://doi.org/10.1016/J.LWT.2006.11.013

    Article  CAS  Google Scholar 

  28. Gülçin İ, Bursal E, Şehitoğlu MH et al (2010) Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem Toxicol 48:2227–2238. https://doi.org/10.1016/j.fct.2010.05.053

    Article  CAS  PubMed  Google Scholar 

  29. Sharma KK, Saikia R, Kotoky J et al (2011) Antifungal activity of Solanum melongena L, Lawsonia inermis L. and Justicia gendarussa B. against dermatophytes. Int J PharmTech Res 3:1635–1640

    Google Scholar 

  30. Yİğİt D (2017) Antifungal activity of Lawsonia inermis L. (Henna) against clinical candida isolates. J Sci Technol 10:196–202. https://doi.org/10.18185/erzifbed.328754

    Article  Google Scholar 

  31. Silva MRR, Oliveira JG, Fernandes OFL et al (2005) Antifungal activity of Ocimum gratissimum towards dermatophytes. Mycoses 48:172–175. https://doi.org/10.1111/j.1439-0507.2005.01100.x

    Article  CAS  PubMed  Google Scholar 

  32. Clinical and Laboratory Standards Institute (2017) M38–A2 reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, 3rd edn. CLSI Standard, Wayne

    Google Scholar 

  33. Schwarz S, Silley P, Simjee S et al (2010) Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 65:601–604. https://doi.org/10.1093/jac/dkq037

    Article  CAS  PubMed  Google Scholar 

  34. Martinelli PRP, Santos J (2010) Scanning electron microscopy of nematophagous fungi associated tylenchulus semipenetrans and pratylenchus jaehni. Biosci J 26:809–816

    Google Scholar 

  35. SAS Institute Inc (2012) SAS user guide: statistics, version 5. SAS Institute Inc, Cary

    Google Scholar 

  36. Pathania S, Rudramurthy SM, Narang T et al (2018) A prospective study of the epidemiological and clinical patterns of recurrent dermatophytosis at a tertiary care hospital in India. Indian J Dermatol Venereol Leprol 84:678–684. https://doi.org/10.4103/ijdvl.IJDVL_645_17

    Article  PubMed  Google Scholar 

  37. Singh A, Masih A, Khurana A et al (2018) High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses 61:477–484. https://doi.org/10.1111/myc.12772

    Article  CAS  PubMed  Google Scholar 

  38. Al-Arifi MN (2013) Availability and needs of herbal medicinal information resources at community pharmacy, Riyadh region, Saudi Arabia. Saudi Pharm J 21:351–360. https://doi.org/10.1016/j.jsps.2012.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lopes G, Pinto E, Andrade PB, Valentão P (2013) Antifungal activity of phlorotannins against dermatophytes and yeasts: approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS ONE 8:e72203. https://doi.org/10.1371/journal.pone.0072203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jayaprakasha GK, Singh RP, Sakariah KK (2001) Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem 73:285–290. https://doi.org/10.1016/S0308-8146(00)00298-3

    Article  CAS  Google Scholar 

  41. Tan MC, Tan CP, Ho CW (2013) Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int Food Res J 20:3117–3123

    CAS  Google Scholar 

  42. Huang D, Boxin OU, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856. https://doi.org/10.1021/jf030723c

    Article  CAS  PubMed  Google Scholar 

  43. Nabila A, Kheira H, Zakaria B, Noureddine D (2018) Antifungal activity of Lawsonia inermis leaf extract against dermatophytes species. Int J Biosci 12:279–283. https://doi.org/10.12692/ijb/12.5.279-283

    Article  CAS  Google Scholar 

  44. Wang L, Wang J, Fang L et al (2014) Anticancer activities of citrus peel polymethoxyflavones related to angiogenesis and others. Biomed Res Int 2014:1–10. https://doi.org/10.1155/2014/453972

    Article  CAS  Google Scholar 

  45. Wagini NH, Abbas MS, Soliman AS, Hanafy YA, El-Saady MB (2014) In Vitro and in vivo anti-dermatophytes activity of Lawsonia Inermis L. (Henna) leaves against ringworm and its etiological agents. Am J Clin Exp Med 2:51. https://doi.org/10.11648/j.ajcem.20140203.13

    Article  Google Scholar 

  46. Aboh MI, Oladosu P, Adeshina GO et al (2018) Screening of selected medicinal plants for their antifungal properties. Afr J Clin Exp Microbiol 20:54. https://doi.org/10.4314/ajcem.v20i1.8

    Article  Google Scholar 

  47. Sagar K, Vidyasagar GM (2013) Anti-dermatophytic activity of some traditionally used medicinal plants of North Karnataka Region. J Appl Pharm Sci 3:77–083. https://doi.org/10.7324/JAPS.2013.30213

    Article  Google Scholar 

  48. Pippi B, Lopes W, Reginatto P et al (2019) New insights into the mechanism of antifungal action of 8-hydroxyquinolines. Saudi Pharm J 27:41–48. https://doi.org/10.1016/j.jsps.2018.07.017

    Article  PubMed  Google Scholar 

  49. Nishiyama Y, Takahata S, Abe S (2017) Morphological effect of the new antifungal agent ME1111 on hyphal growth of Trichophyton mentagrophytes, determined by scanning and transmission electron microscopy. Antimicrob Agents Chemother 61:e01195-e1216. https://doi.org/10.1128/AAC.01195-16

    Article  CAS  PubMed  Google Scholar 

  50. Ghannoum M, Isham N, Henry W et al (2012) Evaluation of the morphological effects of TDT 067 (terbinafine in transfersome) and conventional terbinafine on dermatophyte hyphae in vitro and in vivo. Antimicrob Agents Chemother 56:2530–2534. https://doi.org/10.1128/AAC.05998-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martins FJ, Caneschi CA, Senra MP et al (2017) In vitro antifungal activity of hexahydropyrimidine derivatives against the causative agents of dermatomycosis. Sci World J. https://doi.org/10.1155/2017/1207061

    Article  Google Scholar 

  52. Caneschi CA, Martins FJ, Larrudé DG et al (2015) In vitro antifungal activity of baccharis trimera less (DC) essential oil against dermatophytes. Trop J Pharm Res 14:2083–2089. https://doi.org/10.4314/tjpr.v14i11.19

    Article  CAS  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MT contributed to the conceptualization, methodology, validation, and supervision. YHT contributed to the conceptualization, methodology, validation, investigation, formal analysis, visualization, writing of the original draft, and reviewing, and editing of the manuscript. SIMAH contributed to resources, data curation, investigation, visualization, and writing of the original draft. MFAE contributed to conceptualization, methodology, investigation, validation, formal analysis, and writing of the original draft.

Corresponding author

Correspondence to Yasmine H. Tartor.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical Approval

Not applicable.

Consent to Publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2021_2686_MOESM1_ESM.pdf

Calibration curves of reference standards of henna (Lawsonia inermis). Luteolin-3-O-glucosid, Lawsone, Cosmosiin, Gallic acid, 1,4-Naphthoquinone, Fraxetin, para coumaric acid, and Apigenin were the references used for HPLC analysis Supplementary file1 (PDF 2825 KB)

284_2021_2686_MOESM2_ESM.pdf

HPLC chromatograms of acetone extract (A) and ethanol extract (B) of henna leaves. Peak No.1: Luteolin-3-O glucoside, 2: Lawsone, 3: Cosmosiin, 4: gallic acid, 5: 1,4-Naphthoquinone, 6: fraxetin, 7: Para coumaric acid, and 8: Apigenin Supplementary file2 (PDF 372 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, M., Tartor, Y.H., Abdul-Haq, S.I.M. et al. Characterization and Antidermatophyte Activity of Henna Extracts: A Promising Therapy for Humans and Animals Dermatophytoses. Curr Microbiol 79, 59 (2022). https://doi.org/10.1007/s00284-021-02686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-021-02686-4

Navigation