Skip to main content

Advertisement

Log in

Modulation of Secondary Metabolites: A Halotolerance Strategy of Plant Growth Promoting Rhizobacteria Against Sodium Chloride Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An experiment was conducted to evaluate the role of bacterial secondary metabolites against induced salt stress. Five bacterial strains were isolated from three different habitats: Khewra salt range, oily sludge field in Chakwal, and garden soil of Quaid-i-Azam University Islamabad, Pakistan. The 16S rRNA gene and BLAST analysis of bacterial strains showed 99% sequence similarity with Pseudomonas putida AMUPP-2 (KM435273), Lysinibacillus sphaericus OUG29GKBB (KM972671), Bacillus pumilus MB431 (KP723538) isolated from salt range, Pseudomonas fluorescens B8 (KF010368) from garden soil and Exiguobacterium aurantiacum SPD2 (KX121703) from oily sludge, respectively. Pseudomonas fluorescens produced 294.98 µg/g of proline in the M9 medium supplemented with 125 mM NaCl, but its growth rate was decreased from 1.81 to 0.37. The P. putida showed faster growth rate even than control at 125 mM NaCl. B. pumilus and L. sphaericus did not show any decline in growth rate up to 100 mM NaCl. The synthesis of new amino acids were recorded at 125 mM NaCl stress, e.g., Pro, Leu, Arg in P. fluorescens and L. sphaericus, Pro, Lys, Phe, Ala in P. putida, Lys, Ala in B. pumilus, Met, Val, and Ala in E. aurantiacum. Liquid chromatography-mass spectrometry analysis of ethyl acetate extract of P. putida and L. sphaericus demonstrated that NaCl (125mM) induced the production of 3-oxo-C12 homoserine lactone, oxosteroids, and steroid esters in addition to steroidal alkaloid lysophosphatidylcholines, antibiotics phenazine-1 carboxamide, 2,4-diacetyl phloroglucinol, carbazole, phosphatidylcholine, phosphatidyl ethanol amine, and salicylic acid as signaling compound. It was concluded that P. putida and L. sphaericus could be exploited for the production of secondary metabolites that have a wide range of implications in biotic and abiotic stresses and for the production of important pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Shigyo N, Umeki K, Hirao T (2019) Plant functional diversity and soil properties control elevational diversity gradients of soil bacteria. FEMS Microbiol Ecol 95(4):fiz025. https://doi.org/10.1093/femsec/fiz025

    Article  CAS  PubMed  Google Scholar 

  2. Verma M, Mishra J, Arora NK (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Environmental Biotechnology for sustainable future. Springer, Singapore, pp 129-173. https://doi.org/10.1007/978-981-10-7284-06

  3. Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and Plant Health. Springer, Singapore, pp 163-200. https://doi.org/10.1007/978-981-10-3473-2_7

  4. Vaidya S, Dev K, Sourirajan A (2018) Distinct osmoadaptation strategies in the strict halophilic and halotolerant bacteria isolated from Lunsu saltwater body of Northwest Himalayas. Curr Microbiol 75(7):888–895. https://doi.org/10.1007/s00284-018-1462-8

    Article  CAS  PubMed  Google Scholar 

  5. Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42(3):353–375. https://doi.org/10.1093/femsre/fuy009

    Article  CAS  PubMed  Google Scholar 

  6. Kindzierski V, Raschke S, Knabe N, Siedler F, Scheffer B, Pflüger-Grau K, Kunte HJ (2017) Osmoregulation in the halophilic bacterium Halomonas elongata: a case study for integrative systems biology. PloS One 12(1):e0168818. https://doi.org/10.1371/journal.pone.0168818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. León MJ, Hoffmann T, Sánchez-Porro C, Heider J, Ventosa A, Bremer E (2018) Compatible solute synthesis and import by the moderate halophile Spiribacter salinus: physiology and genomics. Front Microbiol 9:108. https://doi.org/10.3389/fmicb.2018.00108

    Article  PubMed  PubMed Central  Google Scholar 

  8. Deole R, Hoff WD (2020) A potassium chloride to glycine betaine osmoprotectant switch in the extreme halophile Halorhodospira halophila. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-59231-9

    Article  CAS  Google Scholar 

  9. Imhoff JF, Rahn T, Kunzel S, Keller A, Neulinger SC (2021) Osmotic adaptation and compatible solute biosynthesis of phototrophic bacteria as revealed from genome analyses. Microorganisms 9(1):46. https://doi.org/10.3390/microorganisms9010046

    Article  CAS  Google Scholar 

  10. Chen JH, Chi MC, Lin MG, Lin LL, Wang TF (2015) Beneficial effect of sugar osmolytes on the refolding of guanidine hydrochloride-denatured trehalose-6-phosphate hydrolase from Bacillus licheniformis. Biomed Res Int 4:1–9. https://doi.org/10.1155/2015/806847

    Article  CAS  Google Scholar 

  11. Marchant R (2019) The future of microbial biosurfactants and their applications. In: Microbial biosurfactants and their environmental and industrial applications. CRC Press/Taylor and Francis Group, pp 364-370. https://doi.org/10.1201/b21950-14

  12. Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Pept Sci 104(3):129–147. https://doi.org/10.1002/bip.22630

    Article  CAS  Google Scholar 

  13. Ines M, Dhouha G (2015) Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 71:100–112. https://doi.org/10.1002/bip.22630

    Article  CAS  PubMed  Google Scholar 

  14. Loeschcke A, Thies S (2015) Pseudomonas putida: A versatile host for the production of natural products. Appl Microbiol Biotechnol 99(15):6197–6214. https://doi.org/10.1007/s00253-015-6745-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999. https://doi.org/10.1007/s11356-015-4294-0

    Article  CAS  Google Scholar 

  16. Ullah A, Bano A (2019) Role of PGPR in the reclamation and revegetation of saline land. Pak J Bot 51(1): 27-35. https://doi.org/10.30848/pjb2019-1(43)

  17. Aryal S (2018) Gram staining: principle, procedure, interpretation, examples and animation

  18. Steel KJ (1961) The oxidase reaction as a taxonomic tool. Microbiol 25(2):297–306. https://doi.org/10.1099/00221287-25-2-297

    Article  Google Scholar 

  19. Smith PB (1981) Biochemical tests for identification of medical bacteria. MacFadden JF, Williams W, Baltimore 1980 (edn), pp 527. Int J Syst Evol Microbiol 31(1):108-108. https://doi.org/10.1099/00207713-31-1-108

  20. Montville TJ (1983) Dual-substrate plate diffusion assay for proteases. Appl Environ Microbiol 45(1):200–204. https://doi.org/10.1128/aem.45.1.200-204.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ertugrul S, Donmez G, Takaç S (2007) Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. J Hazard Mat 149(3):720–724. https://doi.org/10.1016/j.jhazmat.2007.04.034

    Article  CAS  Google Scholar 

  22. Barrow G, Feltham RKA (2004) Cowan and steel’s manual for the identification of medical bacteria. Cambridge Univ Press. https://doi.org/10.1017/cbo9780511527104

    Article  Google Scholar 

  23. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. https://doi.org/10.1007/bf00018060

    Article  CAS  Google Scholar 

  24. Triplett EW (2007). Prospects for significant nitrogen fixation in grasses from bacterial endophytes. In: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 303-314. https://doi.org/10.1007/1-4020-3546-2_13

  25. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2(1):6. https://doi.org/10.1186/2193-1801-2-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wratten SJ, Wolfe MS, Andersen RJ, Faulkner DJ (1977) Antibiotic metabolites from a marine pseudomonad. Antimicrobe Agents Chemother 11(3):411–414. https://doi.org/10.1128/aac.11.3.411

    Article  CAS  Google Scholar 

  27. Cheng HR, Jiang N (2006) Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol lett 28(1):55–59. https://doi.org/10.1007/s10529-005-4688-z

    Article  CAS  PubMed  Google Scholar 

  28. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45(9):2761–2764. https://doi.org/10.1128/jcm.01228-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berga M, Zha Y, Székely AJ, Langenheder S (2017) Functional and compositional stability of bacterial meta communities in response to salinity changes. Front. Microbiol 8:948. https://doi.org/10.3389/fmicb.2017.00948

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chun SC, Paramasivan M, Chandrasekaran M (2018) Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol 9:2525. https://doi.org/10.3389/fmicb.2018.02525

    Article  PubMed  PubMed Central  Google Scholar 

  32. El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127. https://doi.org/10.3389/fpls.2020.01127

    Article  PubMed  PubMed Central  Google Scholar 

  33. Leung, D. W. (2015). Relationship between changes in contents of nitric oxide and amino acids particularly proline in plants under abiotic stress. In: Reactive oxygen species and oxidative damage in plants under stress, Springer, Cham, pp 341-352. https://doi.org/10.1007/978-3-319-20421-5_14

  34. Qiu XM, Sun YY, Ye XY, Li ZG (2020) Signaling role of glutamate in plants. Front Plant Sci 10:1743. https://doi.org/10.3389/fpls.2019.01743

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452. https://doi.org/10.3390/molecules24132452

    Article  CAS  PubMed Central  Google Scholar 

  36. Martínez Y, Li X, Liu G, Bin P, Yan W, Mas D, Yin Y (2017) The role of methionine on metabolism, oxidative stress and diseases. J Amino Acids 49(12):2091–2098. https://doi.org/10.1007/s00726-017-2494-2

    Article  CAS  Google Scholar 

  37. Kang Y, Hwang I (2018) Glutamate uptake is important for osmoregulation and survival in the rice pathogen Burkholderia glumae. PloS One 13(1):e0190431. https://doi.org/10.1371/journal.pone.0190431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fatma M, Masood A, Per TS, Khan NA (2016) Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521. https://doi.org/10.3389/fpls.2016.00521

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kang SM, Radhakrishnan R, Lee SM, Park YG, Kim AY, Seo CW, Lee IJ (2015) Enterobacter sp. SE992-induced regulation of amino acids, sugars, and hormones in cucumber plants improves salt tolerance. Acta Physiol. Plant 37(8):1–10. https://doi.org/10.1007/s11738-015-1895-7

    Article  CAS  Google Scholar 

  40. Han M, Zhang C, Suglo P, Sun S, Wang M, Su T (2021) l-Aspartate: an essential metabolite for plant growth and stress acclimation. Molecules 26(7):1887. https://doi.org/10.3390/molecules26071887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hartmann A (2020) Quorum sensing N-acyl-homoserine lactone signal molecules of plant beneficial Gram-negative rhizobacteria support plant growth and resistance to pathogens. Rhizosphere 16:100258. https://doi.org/10.1016/j.rhisph.2020.100258

    Article  Google Scholar 

  42. Monnier N, Furlan A, Botcazon C, Dahi A, Mongelard G, Cordelier S, Rippa S (2018) Rhamnolipids from Pseudomonas aeruginosa are elicitors triggering Brassica napus protection against Botrytis cinerea without physiological disorders. Front Plant Sci 9:1170. https://doi.org/10.3389/fpls.2018.01170

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mozejko-Ciesielska J, Szacherska K, Marciniak P (2019) Pseudomonas species as producers of eco-friendly polyhydroxyalkanoates. J Polym Environ 27(6):1151–1166. https://doi.org/10.1007/s10924-019-01422-1

    Article  CAS  Google Scholar 

  44. Van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL (2017) The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochem Biophys Acta Biomemb 9:1558–1572. https://doi.org/10.1016/j.bbamem.2017.04.006

    Article  CAS  Google Scholar 

  45. Suresh P, Varathraju G, Shanmugaiah V, Almaary KS, Elbadawi YB, Mubarak A (2021) Partial purification and characterization of 2, 4-diacetylphloroglucinol producing Pseudomonas fluorescens VSMKU3054 against bacterial wilt disease of tomato. Saudi J Biol Sci 28(4):2155–2167. https://doi.org/10.1016/j.sjbs.2021.02.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rush TA, Puech-Pagès V, Bascaules A, Jargeat P, Maillet F, Haouy AAne JM, (2020) Lipo-chitooligosaccharides as regulatory signals of fungal growth and development. Nat Commun 11(1):1–10. https://doi.org/10.1038/s41467-020-17615-5

    Article  CAS  Google Scholar 

  47. Siliakus MF, van der Oost J, Kengen SW (2017) Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21(4):651–670. https://doi.org/10.1007/s00792-017-0939-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rudolf JD, Alsup TA, Xu B, Li Z (2021) Bacterial terpenome. Nat Product Rep. https://doi.org/10.1039/D0NP00066C

    Article  Google Scholar 

  49. Koo YM, Heo AY, Choi HW (2020) Salicylic acid as a safe plant protector and growth regulator. Plant Pathol J 36(1):1. https://doi.org/10.5423/PPJ.RW.12.2019.0295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma X, Zheng J, Zhang X, Hu Q, Qian R (2017) Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8:600. https://doi.org/10.3389/fpls.2017.00600

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghari Bano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Bano, A. Modulation of Secondary Metabolites: A Halotolerance Strategy of Plant Growth Promoting Rhizobacteria Against Sodium Chloride Stress. Curr Microbiol 78, 4050–4059 (2021). https://doi.org/10.1007/s00284-021-02647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02647-x