Skip to main content
Log in

Bacterial Diversity in a Sri Lankan Geothermal Spring Assessed by Culture-Dependent and Culture-Independent Approaches

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Hot springs harbour diverse and interesting groups of microorganisms adapted to extreme conditions. However, due to limitations in the culture-dependent approach, most of such thermophiles remain uncultured and unexplored. Hence, this study was conducted to gain a comprehensive understanding of the bacterial diversity of Mahapelessa hot spring, Sri Lanka using both culture-dependent and culture-independent approaches. The in situ temperature of the water sample was 44.5 °C and the pH was 8.14. 16S rRNA Sanger sequencing of DNA extracted from the 18 bacterial isolates revealed the presence of eight genera belonging to two phyla: Proteobacteria (84%) and Firmicutes (16%) and the most abundant genus being Klebsiella. A total of 23 bacterial phyla representing 80 classes, 43 orders, 123 families, 205 genera and 83 species were detected by 16S rRNA V3-V4 region by amplicon metagenome sequencing of DNA extracted from water samples, where the most abundant phylum was the Proteobacteria (57.39%), followed by Firmicutes (23.7%) and Chloroflexi (4.14%). The three phyla Actinobacteria, Planctomycetes and Bacteroidetes were also detected less than 3% in abundance while 4.48% of bacteria could not be fit into any known phylum. The most abundant genera were Burkholderia (14.87%), Desulfotomaculum (7.23%) and Stenotrophomonas (6.1%). Four strictly anaerobic bacteria, Anaerosolibacter carboniphilus (0.71%), Bellilinea caldifistulae (0.04%), Salimesophilobacter vulgaris (0.1%), Anaerobacterium chartisolvens (0.12%); two potential plant growth-promoting bacteria, Azospirillum halopraeferens (0.04%) and Bradyrhizobium liaoningense (0.16%) and one potential alkali tolerant and sulphate-reducing bacterium, Desulfovibrio alkalitolerans (0.45%) were recorded. Pigmentiphaga sp. was isolated from Mahapelessa hot spring and to the best of our knowledge, this is the first record of this genus from a hot spring. This study gives insight into the vast bacterial diversity present in the Mahapelessa hot spring from the culture-independent approach which could not be identified using standard culturing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

We have not reproduced any pre-published information/material for this study.

Code Availability

Not applicable.

References

  1. Rampelotto PH (2013) Extremophiles and extreme environments. Life 3:482–485. https://doi.org/10.3390/life3030482

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hreggvidsson GO, Petursdottir SK, Bjöornsdottir SH, Fridjonsson OH (2012) Microbial speciation in the geothermal ecosystem. In: Stan-Lotter H, Fendrihan S (eds) Adaption of microbial life to environmental extremes, 1st edn. Springer, Vienna, pp 37–67. https://doi.org/10.1007/978-3-211-99691-1_3

    Chapter  Google Scholar 

  3. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:1–23. https://doi.org/10.1186/1475-2859-6-9

    Article  CAS  Google Scholar 

  4. Baker GC, Gaffar S, Cowan DA, Suharto AR (2001) Bacterial community analysis of Indonesian hot springs. FEMS Microbiol Lett 200:103–109. https://doi.org/10.1016/S0378-1097(01)00207-5

    Article  CAS  PubMed  Google Scholar 

  5. Mathai S, Roy KR, Rajendran N (2014) Importance of marine thermophiles in biotechnological applications. Int J Pharm Sci Rev Res 27:153–160

    CAS  Google Scholar 

  6. Merino N, Aronson HS, Bojanova DP et al (2019) Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00780

    Article  PubMed  PubMed Central  Google Scholar 

  7. López-López O, Cerdán ME, González-Siso MI (2013) Hot spring metagenomics. Life 3:308–320. https://doi.org/10.3390/life3020308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang J, Liang Y, Jiang D et al (2018) Temperature-controlled thermophilic bacterial communities in hot springs of western Sichuan, China. BMC Microbiol 18:1–14. https://doi.org/10.1186/s12866-018-1271-z

    Article  CAS  Google Scholar 

  9. Streit WR, Schmitz RA (2004) Metagenomics—the key to the uncultured microbes. Curr Opin Microbiol 7:492–498. https://doi.org/10.1016/j.mib.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  10. Mehetre GT, Paranjpe A, Dastager SG, Dharne MS (2016) Investigation of microbial diversity in geothermal hot springs in Unkeshwar, India, based on 16S rRNA amplicon metagenome sequencing. Genome Announc 4:4–5. https://doi.org/10.1128/genomeA.01766-15

    Article  Google Scholar 

  11. Singh A, Subudhi E (2016) Structural insights of microbial community of Deulajhari (India) hot spring using 16S-rRNA based metagenomic sequencing. Genomics Data 7:101–102. https://doi.org/10.1016/j.gdata.2015.12.004

    Article  PubMed  Google Scholar 

  12. Sahoo RK, Subudhi E, Kumar M (2015) Investigation of bacterial diversity of hot springs of Odisha, India. Genomics Data 6:188–190. https://doi.org/10.1016/j.gdata.2015.09.018

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hussein EI, Jacob JH, Shakhatreh MAK et al (2017) Exploring the microbial diversity in Jordanian hot springs by comparative metagenomic analysis. Microbiologyopen 6:1–8. https://doi.org/10.1002/mbo3.521

    Article  CAS  Google Scholar 

  14. Ghilamicael AM, Budambula NLM, Anami SE et al (2017) Evaluation of prokaryotic diversity of five hot springs in Eritrea. BMC Microbiol 17:1–13. https://doi.org/10.1186/s12866-017-1113-4

    Article  CAS  Google Scholar 

  15. Inskeep WP, Jay ZJ, Tringe SG et al (2013) TheYNP metagenome project : environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front Microbiol 4:1–15. https://doi.org/10.3389/fmicb.2013.00067

    Article  CAS  Google Scholar 

  16. Chandrajith R, Barth JAC, Subasinghe ND et al (2013) Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: evidence for steeper than expected geothermal gradients. J Hydrol 476:360–369. https://doi.org/10.1016/j.jhydrol.2012.11.004

    Article  CAS  Google Scholar 

  17. Magana-Arachchi DN, Wanigatunge RP (2008) Molecular and morphological characterization of cyanobacteria and archaea in hot water springs Mahapelessa, Sri Lanka. Pragña XIX:51–59. http://ifs.nsf.ac.lk/handle/1/543. Accessed on 18 March 2020

  18. Medhavi PIHR, Samarasinghe DGSN, Herath HM et al (2018) Isolation and identification of thermophilic bacteria and cyanobacteria in Maha Oya hot springs. Digital repository University of Kelaniya, Sri Lanka. http://repository.kln.ac.lk/handle/123456789/19096. Accessed on 17 March 2020

  19. Nandanee GGW, Dassanayaka PN, Wijeyaratne SC (2015) Screening and characterization of thermophilic bacteria from hot springs of Sri Lanka for potential industrial application. University of Sri Jayewardenepura, Nugegoda. http://dr.lib.sjp.ac.lk/handle/123456789/3985?show=full-. Accessed on 17 March 2020

  20. Abeywickrama BA, Abeywickrama L, Arulgnanum P, Jansen MAB (1986) The genera of the freshwater algae of Sri Lanka: part 2: Cyanophyceae (blue-green algae). UNESCO man and the biosphere national committee for Sri Lanka, Special publication 6. National science council Sri Lanka, Colombo, pp 103.  http://search.lib.ou.ac.lk/cgi-bin/koha/opac-detail.pl?biblionumber=155571. Accessed on 10 June 2021

  21. Holt JG, Krieg NR, Sneath PHA et al (1994) Bergey's manual of determinative bacteriology. Williams & Wilkins Co., Baltimore, USA

  22. Somerville W, Thibert L, Schwartzman K, Behr MA (2005) Extraction of Mycobacterium tuberculosis DNA: a question of containment. J Clin Microbiol 43:2996–2997. https://doi.org/10.1128/JCM.43.6.2996-2997.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frank JA, Reich CI, Sharma S et al (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470. https://doi.org/10.1128/AEM.02272-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boom R, Sol CJA, Salimans MMM et al (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503. https://doi.org/10.1128/jcm.28.3.495-503.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paytuví A, Battista E, Scippacercola F et al (2019) GAIA: An integrated metagenomics suite. bioRxiv. https://doi.org/10.1101/804690

  26. Wang S, Hou W, Dong H et al (2013) Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS ONE. https://doi.org/10.1371/journal.pone.0062901

    Article  PubMed  PubMed Central  Google Scholar 

  27. Prieto-Barajas CM, Alfaro-Cuevas R, Valencia-Cantero E, Santoyo G (2017) Effect of seasonality and physicochemical parameters on bacterial communities in two hot spring microbial mats from Araró, Mexico. Rev Mex Biodivers 88:616–624. https://doi.org/10.1016/j.rmb.2017.07.010

    Article  Google Scholar 

  28. Sharma SK, Kumar R, Vaishnav A et al (2017) Microbial cultures: maintenance, preservation and registration. In: Varma A, Sharma A (eds) Modern tools and techniques to understand microbes. Springer, Cham, pp 335–367. https://doi.org/10.1007/978-3-319-49197-4_22

    Chapter  Google Scholar 

  29. Sipkema D, Schippers K, Maalcke WJ et al (2011) Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl Environ Microbiol 77:2130–2140. https://doi.org/10.1128/AEM.01203-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Debnath M, Mandal NC, Ray S (2009) The study of cyanobacterial flora from geothermal springs of Bakreswar, West Bengal, India. Algae 24:185–193. https://doi.org/10.4490/algae.2009.24.4.185

    Article  Google Scholar 

  31. Amarouche-Yala S, Benouadah A, El Ouahab BA, López-García P (2014) Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs. Extremophiles 18:1035–1047. https://doi.org/10.1007/s00792-014-0680-7

    Article  CAS  PubMed  Google Scholar 

  32. Jaffer YD, Vinothkumar R, Irfan AB et al (2019) Isolation and characterization of thermophilic bacteria from Maharashtra hot springs: Bacillus sp. and Staphylococcus sp. J Entomol Zool Stud 7:691–695

    Google Scholar 

  33. Kumar M, Yadav AN, Tiwari R et al (2014) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Bioprospecting Dev 01:1–9. https://doi.org/10.4172/2376-0214.1000127

    Article  Google Scholar 

  34. Baysal Z, Uyar F, Aytekin Ç̧, (2003) Solid-state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem 38:1665–1668. https://doi.org/10.1016/S0032-9592(02)00150-4

    Article  CAS  Google Scholar 

  35. Dauga C, Gillis M, Ageron E et al (1993) Balneatrix alpica gen. nov., sp. nov., a bacterium associated with pneumonia and meningitis in a spa therapy center. Res Microbiol 1070:35–46. https://doi.org/10.1016/0923-2508(93)90213-l

    Article  Google Scholar 

  36. Liu L, Salam N, Jiao JY et al (2016) Diversity of culturable thermophilic Actinobacteria in hot springs in Tengchong, China and studies of their biosynthetic gene profiles. Microb Ecol 72:150–162. https://doi.org/10.1007/s00248-016-0756-2

    Article  CAS  PubMed  Google Scholar 

  37. Narsing Rao MP, Dong ZY, Luo ZH et al (2021) Physicochemical and microbial diversity analyses of Indian hot springs. Front Microbiol 12:1–10. https://doi.org/10.3389/fmicb.2021.627200

    Article  Google Scholar 

  38. Mukherjee T, Banik A, Mukhopadhyay SK (2020) Plant growth-promoting traits of a thermophilic strain of the Klebsiella group with its effect on rice plant growth. Curr Microbiol 77:2613–2622. https://doi.org/10.1007/s00284-020-02032-0

    Article  CAS  PubMed  Google Scholar 

  39. Bandyopadhyay S, Schumann P, Das SK (2013) Pannonibacter indica sp. nov., a highly arsenate-tolerant bacterium isolated from a hot spring in India. Arch Microbiol 195:1–8. https://doi.org/10.1007/s00203-012-0840-z

    Article  CAS  PubMed  Google Scholar 

  40. Lee JJ, Srinivasan S, Kim MK (2011) Pigmentiphaga soli sp. nov., a bacterium isolated from soil. J Microbiol 49:857–861. https://doi.org/10.1007/s12275-011-1375-8

    Article  CAS  PubMed  Google Scholar 

  41. Saxena R, Dhakan DB, Mittal P et al (2017) Metagenomic analysis of hot springs in central india reveals hydrocarbon-degrading thermophiles and pathways essential for survival in extreme environments. Front Microbiol. https://doi.org/10.3389/fmicb.2016.02123

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sharma N, Kumar J, Abedin MM et al (2020) Metagenomics revealing molecular profiling of community structure and metabolic pathways in natural hot springs of the Sikkim Himalaya. BMC Microbiol 20:1. https://doi.org/10.1186/s12866-020-01923-3

    Article  CAS  Google Scholar 

  43. Stöhr R, Waberski A, Liesack W et al (2001) Hydrogenophilus hirschii sp. nov., a novel thermophilic hydrogen-oxidizing β-proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488. https://doi.org/10.1099/00207713-51-2-481

    Article  PubMed  Google Scholar 

  44. Sahay H, Yadav AN, Singh AK et al (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech. https://doi.org/10.1007/s13205-017-0762-1

    Article  PubMed  PubMed Central  Google Scholar 

  45. Haouari O, Fardeau ML, Cayol JL et al (2008) Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Int J Syst Evol Microbiol 58:2529–2535. https://doi.org/10.1099/ijs.0.65339-0

    Article  CAS  PubMed  Google Scholar 

  46. Vésteinsdóttir H, Reynisdóttir DB, Örlygsson J (2011) Hydrogenophilus islandicus sp. nov., a thermophilic hydrogen-oxidizing bacterium isolated from an Icelandic hot spring. Int J Syst Evol Microbiol 61:290–294. https://doi.org/10.1099/ijs.0.023572-0

    Article  CAS  PubMed  Google Scholar 

  47. Imachi H, Sekiguchi Y, Kamagata Y et al (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735. https://doi.org/10.1099/ijs.0.02212-0

    Article  CAS  PubMed  Google Scholar 

  48. Schäffer R, Sass I (2014) The thermal springs of Jordan. Environ Earth Sci 72:171–187. https://doi.org/10.1007/s12665-013-2944-4

    Article  Google Scholar 

  49. Johnson JS, Spakowicz DJ, Hong BY et al (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10:1–11. https://doi.org/10.1038/s41467-019-13036-1103

    Article  CAS  Google Scholar 

Download references

Funding

National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SNS, RPW and DNM-A. The first draft of the manuscript was written by SNS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dhammika N. Magana-Arachchi.

Ethics declarations

Conflict of interest

All authors declared that there is no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samarasinghe, S.N., Wanigatunge, R.P. & Magana-Arachchi, D.N. Bacterial Diversity in a Sri Lankan Geothermal Spring Assessed by Culture-Dependent and Culture-Independent Approaches. Curr Microbiol 78, 3439–3452 (2021). https://doi.org/10.1007/s00284-021-02608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02608-4

Navigation