Skip to main content

Advertisement

Log in

Effect of Helicobacter pylori and Helminth Coinfection on the Immune Response to Mycobacterium tuberculosis

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Tuberculosis remains one of the main causes of morbidity and mortality worldwide despite decades of efforts to eradicate the disease. Although the immune response controls the infection in most infected individuals (90%), the ability of the bacterium to persist throughout the host’s life leads to a risk of reactivation. Underlying conditions including human immunodeficiency virus (HIV) infection, organ transplantation, and immunosuppressive therapies are considered risk factors for progression to active disease. However, many individuals infected with Mycobacterium tuberculosis may develop clinical disease in the absence of underlying immunosuppression. It is also possible that unknown conditions may drive the progression to disease. The human microbiota can be an important modulator of the immune system; it can not only trigger inflammatory disorders, but also drive the response to other infectious diseases. In developing countries, chronic mucosal infections with Helicobacter pylori and helminths may be particularly important, as these infections frequently coexist throughout the host’s life. However, little is known about the interactions of these pathogens with the immune system and their effects on M. tuberculosis clinical disease, if any. In this review, we discuss the potential effects of H. pylori and helminth co-infections on the immune response to M. tuberculosis. This may contribute to our understanding of host–pathogen interactions and in designing new strategies for the prevention and control of tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cox FE (2001) Concomitant infections, parasites and immune responses. Parasitology 122(Suppl1):S23-38

    Article  Google Scholar 

  2. Griffiths EC, Pedersen AB, Fenton A, Petchey OL (2011) The nature and consequences of coinfection in humans. J Infect 63(3):200–206. https://doi.org/10.1016/j.jinf.2011.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  3. Perry S, Hussain R, Parsonnet J (2011) The impact of mucosal infections on acquisition and progression of tuberculosis. Mucosal Immunol 4(3):246–251

    Article  CAS  Google Scholar 

  4. Perry S, de Jong BC, Solnick JV, MdlL S, Yang S, Lin PL, Hansen LM, Talat N, Hill PC, Hussain R, Adegbola RA, Flynn J, Canfield D, Parsonnet J (2010) Infection with Helicobacter pylori Is associated with protection against tuberculosis. PLoS ONE 5(1):e8804. https://doi.org/10.1371/journal.pone.0008804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rook GAW, Dheda K, Zumla A (2005) Immune responses to tuberculosis in developing countries: implications for new vaccines. Nat Rev Immunol 5(8):661–667

    Article  CAS  Google Scholar 

  6. Hussain R, Talat N, Shahid F, Dawood G (2007) Longitudinal tracking of cytokines after acute exposure to tuberculosis: association of distinct cytokine patterns with protection and disease development. Clin Vaccine Immunol 14(12):1578–1586. https://doi.org/10.1128/cvi.00289-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Demissie A, Wassie L, Abebe M, Aseffa A, Rook G, Zumla A, Andersen P, Doherty TM (2006) The 6-kilodalton early secreted antigenic target-responsive, asymptomatic contacts of tuberculosis patients express elevated levels of interleukin-4 and reduced levels of gamma interferon. Infect Immun 74(5):2817–2822. https://doi.org/10.1128/iai.74.5.2817-2822.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lalor MK, Floyd S, Gorak-Stolinska P, Ben-Smith A, Weir RE, Smith SG, Newport MJ, Blitz R, Mvula H, Branson K, McGrath N, Crampin AC, Fine PE, Dockrell HM (2011) BCG vaccination induces different cytokine profiles following infant BCG vaccination in the UK and Malawi. J Infect Dis 204(7):1075–1085. https://doi.org/10.1093/infdis/jir515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hur YG, Gorak-Stolinska P, Lalor MK, Mvula H, Floyd S, Raynes J, Ben-Smith A, Fitchett JR, Flanagan KL, Burl S, Ota MO, Crampin AC, Smith SG, Dockrell HM (2014) Factors affecting immunogenicity of BCG in infants, a study in Malawi, The Gambia and the UK. BMC Infect Dis 14:184. https://doi.org/10.1186/1471-2334-14-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Monack DM, Mueller A, Falkow S (2004) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2(9):747–765. https://doi.org/10.1038/nrmicro955

    Article  CAS  PubMed  Google Scholar 

  11. Babu S, Nutman TB (2016) Helminth-tuberculosis co-infection: an immunologic perspective. Trends Immunol 37(9):597–607. https://doi.org/10.1016/j.it.2016.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lundgren A, Suri-Payer E, Enarsson K, Svennerholm AM, Lundin BS (2003) Helicobacter pylori-specific CD4+ CD25high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect Immun 71(4):1755–1762

    Article  CAS  Google Scholar 

  13. Maizels RM (2005) Infections and allergy—helminths, hygiene and host immune regulation. Curr Opin Immunol 17(6):656–661. https://doi.org/10.1016/j.coi.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  14. Blaser MJ, Chen Y, Reibman J (2008) Does Helicobacter pylori protect against asthma and allergy? Gut 57(5):561–567. https://doi.org/10.1136/gut.2007.133462

    Article  PubMed  Google Scholar 

  15. Huynh KK, Joshi SA, Brown EJ (2011) A delicate dance: host response to mycobacteria. Curr Opin Immunol 23(4):464–472. https://doi.org/10.1016/j.coi.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  16. Bustamante-Rengifo JA, González-Salazar LÁ, Osorio-Certuche N, Bejarano-Lozano Y, Tovar Cuevas JR, Astudillo-Hernández M, Crespo-Ortiz MdP (2020) Prevalence of and risk factors associated with latent tuberculosis infection in a Latin American region. PeerJ 8:e9429. https://doi.org/10.7717/peerj.9429

    Article  CAS  Google Scholar 

  17. Bosedasgupta S, Pieters J (2014) Striking the right balance determines TB or not TB. Front Immunol. https://doi.org/10.3389/fimmu.2014.00455

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rafi W, Ribeiro-Rodrigues R, Ellner JJ, Salgame P (2012) Coinfection-helminthes and tuberculosis. Curr Opin HIV AIDS 7(3):239–244. https://doi.org/10.1097/COH.0b013e3283524dc5

    Article  CAS  PubMed  Google Scholar 

  19. Ernst JD (2012) The immunological life cycle of tuberculosis. Nat Rev Immunol 12(8):581–591

    Article  CAS  Google Scholar 

  20. Lin PL, Flynn JL (2010) Understanding latent tuberculosis: a moving target. J Immunol 185(1):15–22. https://doi.org/10.4049/jimmunol.0903856

    Article  CAS  PubMed  Google Scholar 

  21. Demissie A, Abebe M, Aseffa A, Rook G, Fletcher H, Zumla A, Weldingh K, Brock I, Andersen P, Doherty TM, Group TVS (2004) Healthy individuals that control a latent infection with Mycobacterium tuberculosis express high levels of Th1 cytokines and the IL-4 antagonist IL-4δ2. J Immunol 172(11):6938–6943. https://doi.org/10.4049/jimmunol.172.11.6938

    Article  CAS  PubMed  Google Scholar 

  22. Millington KA, Innes JA, Hackforth S, Hinks TS, Deeks JJ, Dosanjh DP, Guyot-Revol V, Gunatheesan R, Klenerman P, Lalvani A (2007) Dynamic relationship between IFN-gamma and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J Immunol 178(8):5217–5226

    Article  CAS  Google Scholar 

  23. Moran-Mendoza O, Marion SA, Elwood K, Patrick D, FitzGerald JM (2010) Risk factors for developing tuberculosis: a 12-year follow-up of contacts of tuberculosis cases. Int J Tuberc Lung Dis 14(9):1112–1119

    CAS  PubMed  Google Scholar 

  24. Talat N, Perry S, Parsonnet J, Dawood G, Hussain R (2010) Vitamin D deficiency and tuberculosis progression. Emerg Infect Dis 16(5):853–855. https://doi.org/10.3201/eid1605.091693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J (2008) Helminth infections: the great neglected tropical diseases. J Clin Investig 118(4):1311–1321. https://doi.org/10.1172/jci34261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bourke CD, Maizels RM, Mutapi F (2011) Acquired immune heterogeneity and its sources in human helminth infection. Parasitology 138(2):139–159. https://doi.org/10.1017/s0031182010001216

    Article  CAS  PubMed  Google Scholar 

  27. Salgame P, Yap GS, Gause WC (2013) Effect of helminth-induced immunity on infections with microbial pathogens. Nat Immunol 14(11):1118–1126. https://doi.org/10.1038/ni.2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee SC, Tang MS, Lim YA, Choy SH, Kurtz ZD, Cox LM, Gundra UM, Cho I, Bonneau R, Blaser MJ, Chua KH, Loke P (2014) Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis 8(5):e2880. https://doi.org/10.1371/journal.pntd.0002880

    Article  PubMed  PubMed Central  Google Scholar 

  29. Babu S, Nutman TB (2019) Immune responses to helminth infection. In: Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM (eds) Clinical immunology, 5th edn. Elseiver, London, pp 437-447.e431. https://doi.org/10.1016/B978-0-7020-6896-6.00031-4

    Chapter  Google Scholar 

  30. Allen JE, Maizels RM (2011) Diversity and dialogue in immunity to helminths. Nat Rev Immunol 11(6):375–388

    Article  CAS  Google Scholar 

  31. Cadmus SI, Akinseye VO, Taiwo BO, Pinelli EO, van Soolingen D, Rhodes SG (2020) Interactions between helminths and tuberculosis infections: implications for tuberculosis diagnosis and vaccination in Africa. PLoS Negl Trop Dis 14(6):e0008069. https://doi.org/10.1371/journal.pntd.0008069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gebreegziabiher D, Desta K, Desalegn G, Howe R, Abebe M (2014) The effect of maternal helminth infection on maternal and neonatal immune function and immunity to tuberculosis. PLoS ONE 9(4):e93429. https://doi.org/10.1371/journal.pone.0093429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Babu S, Bhat SQ, Kumar NP, Anuradha R, Kumaran P, Gopi PG, Kolappan C, Kumaraswami V, Nutman TB (2009) Attenuation of toll-like receptor expression and function in latent tuberculosis by coexistent filarial infection with restoration following antifilarial chemotherapy. PLoS Negl Trop Dis 3(7):e489. https://doi.org/10.1371/journal.pntd.0000489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verhagen LM, Hermans PW, Warris A, de Groot R, Maes M, Villalba JA, del Nogal B, van den Hof S, Mughini Gras L, van Soolingen D, Pinelli E, de Waard JH (2012) Helminths and skewed cytokine profiles increase tuberculin skin test positivity in Warao Amerindians. Tuberculosis (Edinb) 92(6):505–512. https://doi.org/10.1016/j.tube.2012.07.004

    Article  CAS  Google Scholar 

  35. Rajamanickam A, Munisankar S, Bhootra Y, Dolla CK, Nutman TB, Babu S (2019) Coexistent helminth infection-mediated modulation of chemokine responses in latent tuberculosis. J Immunol 202(5):1494–1500. https://doi.org/10.4049/jimmunol.1801190

    Article  CAS  PubMed  Google Scholar 

  36. Rajamanickam A, Munisankar S, Dolla C, Menon PA, Nutman TB, Babu S (2020) Helminth coinfection alters monocyte activation, polarization, and function in latent Mycobacterium tuberculosis infection. J Immunol 204(5):1274–1286. https://doi.org/10.4049/jimmunol.1901127

    Article  CAS  PubMed  Google Scholar 

  37. Resende Co T, Hirsch CS, Toossi Z, Dietze R, Ribeiro-Rodrigues R (2007) Intestinal helminth co-infection has a negative impact on both anti-Mycobacterium tuberculosis immunity and clinical response to tuberculosis therapy. Clin Exp Immunol 147(1):45–52. https://doi.org/10.1111/j.1365-2249.2006.03247.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elias D, Britton S, Aseffa A, Engers H, Akuffo H (2008) Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 26(31):3897–3902. https://doi.org/10.1016/j.vaccine.2008.04.083

    Article  CAS  PubMed  Google Scholar 

  39. Elias D, Mengistu G, Akuffo H, Britton S (2006) Are intestinal helminths risk factors for developing active tuberculosis? Trop Med Int Health 11(4):551–558. https://doi.org/10.1111/j.1365-3156.2006.01578.x

    Article  PubMed  Google Scholar 

  40. Chatterjee S, Kolappan C, Subramani R, Gopi PG, Chandrasekaran V, Fay MP, Babu S, Kumaraswami V, Nutman TB (2014) Incidence of active pulmonary tuberculosis in patients with coincident filarial and/or intestinal helminth infections followed longitudinally in South India. PLoS ONE 9(4):e94603. https://doi.org/10.1371/journal.pone.0094603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Santos JHA, Bührer-Sékula S, Melo GC, Cordeiro-Santos M, Pimentel JPD, Gomes-Silva A, Costa AG, Saraceni V, Da-Cruz AM, Lacerda MVG (2019) Ascaris lumbricoides coinfection reduces tissue damage by decreasing IL-6 levels without altering clinical evolution of pulmonary tuberculosis or Th1/Th2/Th17 cytokine profile. Rev Soc Bras Med Trop 52:e20190315. https://doi.org/10.1590/0037-8682-0315-2019

    Article  PubMed  Google Scholar 

  42. Hirsch CS, Ellner JJ, Blinkhorn R, Toossi Z (1997) In vitro restoration of T cell responses in tuberculosis and augmentation of monocyte effector function against Mycobacterium tuberculosis by natural inhibitors of transforming growth factor beta. Proc Natl Acad Sci USA 94(8):3926–3931

    Article  CAS  Google Scholar 

  43. Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH, Maciel E, Hirsch CS (2006) A role for CD4+CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144(1):25–34. https://doi.org/10.1111/j.1365-2249.2006.03027.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kathamuthu GR, Munisankar S, Sridhar R, Baskaran D, Babu S (2019) Helminth mediated modulation of the systemic and mycobacterial antigen—stimulated cytokine profiles in extra-pulmonary tuberculosis. PLoS Negl Trop Dis 13(3):e0007265. https://doi.org/10.1371/journal.pntd.0007265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. George PJ, Kumar NP, Sridhar R, Hanna LE, Nair D, Banurekha VV, Nutman TB, Babu S (2014) Coincident helminth infection modulates systemic inflammation and immune activation in active pulmonary tuberculosis. PLoS Negl Trop Dis 8(11):e3289. https://doi.org/10.1371/journal.pntd.0003289

    Article  PubMed  PubMed Central  Google Scholar 

  46. George PJ, Anuradha R, Kumar NP, Sridhar R, Banurekha VV, Nutman TB, Babu S (2014) Helminth infections coincident with active pulmonary tuberculosis inhibit mono- and multifunctional CD4+ and CD8+ T cell responses in a process dependent on IL-10. PLoS Pathog 10(9):e1004375. https://doi.org/10.1371/journal.ppat.1004375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abate E, Belayneh M, Idh J, Diro E, Elias D, Britton S, Aseffa A, Stendahl O, Schön T (2015) Asymptomatic helminth infection in active tuberculosis is associated with increased regulatory and Th-2 responses and a lower sputum smear positivity. PLoS Negl Trop Dis 9(8):e0003994. https://doi.org/10.1371/journal.pntd.0003994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elias D, Wolday D, Akuffo H, Petros B, Bronner U, Britton S (2001) Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guerin (BCG) vaccination. Clin Exp Immunol 123(2):219–225

    Article  CAS  Google Scholar 

  49. Toulza F, Tsang L, Ottenhoff THM, Brown M, Dockrell HM (2016) Mycobacterium tuberculosis-specific CD4+ T-cell response is increased, and treg cells decreased, in anthelmintic-treated patients with latent TB. Eur J Immun 46(3):752–761. https://doi.org/10.1002/eji.201545843

    Article  CAS  Google Scholar 

  50. Abate E, Elias D, Getachew A, Alemu S, Diro E, Britton S, Aseffa A, Stendahl O, Schön T (2015) Effects of albendazole on the clinical outcome and immunological responses in helminth co-infected tuberculosis patients: a double blind randomised clinical trial. Int J Parasitol 45(2–3):133–140. https://doi.org/10.1016/j.ijpara.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  51. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323. https://doi.org/10.1038/nri2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hughes HK, Rose D, Ashwood P (2018) The gut microbiota and dysbiosis in autism spectrum disorders. Curr Neurol Neurosci Rep 18(11):81. https://doi.org/10.1007/s11910-018-0887-6

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230. https://doi.org/10.1038/nature11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Merrell DS, Falkow S (2004) Frontal and stealth attack strategies in microbial pathogenesis. Nature 430(6996):250–256

    Article  CAS  Google Scholar 

  55. Bustamante-Rengifo JA, Matta AJ, Pazos A, Bravo LE (2013) In vitro effect of amoxicillin and clarithromycin on the 3’ region of cagA gene in Helicobacter pylori isolates. World J Gastroenterol 19(36):6044–6054. https://doi.org/10.3748/wjg.v19.i36.6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peek RM Jr, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2(1):28–37. https://doi.org/10.1038/nrc703

    Article  CAS  PubMed  Google Scholar 

  57. Malaty HM, El-Kasabany A, Graham DY, Miller CC, Reddy SG, Srinivasan SR, Yamaoka Y, Berenson GS (2002) Age at acquisition of Helicobacter pylori infection: a follow-up study from infancy to adulthood. The Lancet 359(9310):931–935. https://doi.org/10.1016/S0140-6736(02)08025-X

    Article  Google Scholar 

  58. Bustamante-Rengifo JA, Matta AJ, Pazos AJ, Bravo LE (2017) Effect of treatment failure on the CagA EPIYA motif in Helicobacter pylori strains from Colombian subjects. World J Gastroenterol 23(11):1980–1989. https://doi.org/10.3748/wjg.v23.i11.1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Monzon H, Forne M, Esteve M, Rosinach M, Loras C, Espinos JC, Viver JM, Salas A, Fernandez-Banares F (2013) Helicobacter pylori infection as a cause of iron deficiency anaemia of unknown origin. World J Gastroenterol 19(26):4166–4171. https://doi.org/10.3748/wjg.v19.i26.4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Taye B, Enquselassie F, Tsegaye A, Amberbir A, Medhin G, Fogarty A, Robinson K, Davey G (2016) Effect of Helicobacter pylori infection on growth trajectories in young Ethiopian children: a longitudinal study. Int J Infect Dis 50:57–66. https://doi.org/10.1016/j.ijid.2016.08.005

    Article  PubMed  Google Scholar 

  61. Matta AJ, Pazos AJ, Bustamante-Rengifo JA, Bravo LE (2017) Genomic variability of Helicobacter pylori isolates of gastric regions from two Colombian populations. World J Gastroenterol 23(5):800–809. https://doi.org/10.3748/wjg.v23.i5.800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robinson K, Argent RH, Atherton JC (2007) The inflammatory and immune response to Helicobacter pylori infection. Best Pract Res Clin Gastroenterol 21(2):237–259. https://doi.org/10.1016/j.bpg.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  63. Gebert B, Fischer W, Weiss E, Hoffmann R, Haas R (2003) Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301(5636):1099–1102. https://doi.org/10.1126/science.1086871

    Article  CAS  PubMed  Google Scholar 

  64. Umehara S, Higashi H, Ohnishi N, Asaka M, Hatakeyama M (2003) Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 22(51):8337–8342. https://doi.org/10.1038/sj.onc.1207028

    Article  CAS  PubMed  Google Scholar 

  65. Hida N, Shimoyama T Jr, Neville P, Dixon MF, Axon AT, Shimoyama T Sr, Crabtree JE (1999) Increased expression of IL-10 and IL-12 (p40) mRNA in Helicobacter pylori infected gastric mucosa: relation to bacterial cag status and peptic ulceration. J Clin Pathol 52(9):658–664. https://doi.org/10.1136/jcp.52.9.658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Torres MA, Passaro DJ, Watanabe J, Parsonnet J, Small P, Miyagu J, Rodriquez C, Astete M, Gilman RH (2003) No association between Helicobacter pylori and Mycobacterium tuberculosis infections among gastrointestinal clinic attendees in Lima. Peru Epidemiol Infect 130(1):87–91

    Article  CAS  Google Scholar 

  67. Yokoyama T, Sato R, Rikimaru T, Hirai R, Aizawa H (2004) Tuberculosis associated with gastrectomy. J Infect Chemother 10(5):299–302. https://doi.org/10.1007/s10156-004-0334-2

    Article  PubMed  Google Scholar 

  68. Philippou N, Roussos A, Tsimpoukas F, Anastasakou E, Mavrea S, Tsimogianni A (2003) Helicobacter pylori infection in patients with active pulmonary tuberculosis before the initiation of antituberculosis treatment. Ann Gastroenterol 16:49–52

    Google Scholar 

  69. Perry S, Chang AH, Sanchez L, Yang S, Haggerty TD, Parsonnet J (2013) The immune response to tuberculosis infection in the setting of Helicobacter pylori and helminth infections. Epidemiol Infect 141(06):1232–1243. https://doi.org/10.1017/S0950268812001823

    Article  CAS  PubMed  Google Scholar 

  70. Boncristiano M, Paccani SR, Barone S, Ulivieri C, Patrussi L, Ilver D, Amedei A, D’Elios MM, Telford JL, Baldari CT (2003) The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J Exp Med 198(12):1887–1897. https://doi.org/10.1084/jem.20030621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eberhardt KA, Sarfo FS, Dompreh A, Kuffour EO, Geldmacher C, Soltau M, Schachscheider M, Drexler JF, Eis-Hübinger AM, Häussinger D, Bedu-Addo G, Phillips RO, Norman B, Burchard GD, Feldt T (2015) Helicobacter pylori coinfection is associated with decreased markers of immune activation in ART-naive HIV-positive and in HIV-negative individuals in Ghana. Clin Infect Dis 61(10):1615–1623. https://doi.org/10.1093/cid/civ577

    Article  CAS  PubMed  Google Scholar 

  72. Shirai M, Arichi T, Nakazawa T, Berzofsky JA (1998) Persistent infection by Helicobacter pylori down-modulates virus-specific CD8+ cytotoxic T cell response and prolongs viral infection. J Infect Dis 177(1):72–80

    Article  CAS  Google Scholar 

  73. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A (2006) Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 173(7):803–810. https://doi.org/10.1164/rccm.200508-1294OC

    Article  CAS  PubMed  Google Scholar 

  74. Wammes LJ, Hamid F, Wiria AE, de Gier B, Sartono E, Maizels RM, Luty AJ, Fillie Y, Brice GT, Supali T, Smits HH, Yazdanbakhsh M (2010) Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. Eur J Immunol 40(2):437–442. https://doi.org/10.1002/eji.200939699

    Article  CAS  PubMed  Google Scholar 

  75. Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C, Muller A (2011) Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest 121(8):3088–3093. https://doi.org/10.1172/jci45041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robinson K, Kenefeck R, Pidgeon EL, Shakib S, Patel S, Polson RJ, Zaitoun AM, Atherton JC (2008) Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut 57(10):1375–1385. https://doi.org/10.1136/gut.2007.137539

    Article  CAS  PubMed  Google Scholar 

  77. Atherton JC, Blaser MJ (2009) Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Investig 119(9):2475–2487. https://doi.org/10.1172/jci38605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harris PR, Wright SW, Serrano C, Riera F, Duarte I, Torres J, Pena A, Rollan A, Viviani P, Guiraldes E, Schmitz JM, Lorenz RG, Novak L, Smythies LE, Smith PD (2008) Helicobacter pylori gastritis in children is associated with a regulatory T-cell response. Gastroenterology 134(2):491–499. https://doi.org/10.1053/j.gastro.2007.11.006

    Article  PubMed  Google Scholar 

  79. Kienesberger S, Cox LM, Livanos A, Zhang XS, Chung J, Perez-Perez GI, Gorkiewicz G, Zechner EL, Blaser MJ (2016) Gastric Helicobacter pylori infection affects local and distant microbial populations and host responses. Cell Rep 14(6):1395–1407. https://doi.org/10.1016/j.celrep.2016.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Olakanmi O, Schlesinger LS, Ahmed A, Britigan BE (2002) Intraphagosomal Mycobacterium tuberculosis acquires iron from both extracellular transferrin and intracellular iron pools impact of interferon-gamma and hemochromatosis. J Biol Chem 277(51):49727–49734. https://doi.org/10.1074/jbc.M209768200

    Article  CAS  PubMed  Google Scholar 

  81. Fang Z, Sampson SL, Warren RM, Gey van Pittius NC, Newton-Foot M (2015) Iron acquisition strategies in mycobacteria. Tuberculosis 95(2):123–130. https://doi.org/10.1016/j.tube.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  82. Weiss G, Schaible UE (2015) Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264(1):182–203. https://doi.org/10.1111/imr.12266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reddy PV, Puri RV, Khera A, Tyagi AK (2012) Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J Bacteriol 194(3):567–575. https://doi.org/10.1128/JB.05553-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. de Monyé C, Karcher DS, Boelaert JR, Gordeuk VR (1999) Bone marrow macrophage iron grade and survival of HIV-seropositive patients. AIDS 13(3):375–380

    Article  Google Scholar 

  85. Muhsen K, Cohen D (2008) Helicobacter pylori infection and iron stores: a systematic review and meta-analysis. Helicobacter 13(5):323–340. https://doi.org/10.1111/j.1523-5378.2008.00617.x

    Article  CAS  PubMed  Google Scholar 

  86. Rishi G, Wallace DF, Subramaniam VN (2015) Hepcidin: regulation of the master iron regulator. Biosci Rep 35(3):e00192. https://doi.org/10.1042/BSR20150014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Minchella PA, Donkor S, Owolabi O, Sutherland JS, McDermid JM (2015) Complex anemia in tuberculosis: the need to consider causes and timing when designing interventions. Clin Infect Dis 60(5):764–772. https://doi.org/10.1093/cid/ciu945

    Article  CAS  PubMed  Google Scholar 

  88. Minchella PA, Donkor S, McDermid JM, Sutherland JS (2015) Iron homeostasis and progression to pulmonary tuberculosis disease among household contacts. Tuberculosis (Edinb) 95(3):288–293. https://doi.org/10.1016/j.tube.2015.02.042

    Article  CAS  Google Scholar 

  89. Hella J, Cercamondi CI, Mhimbira F, Sasamalo M, Stoffel N, Zwahlen M, Bodmer T, Gagneux S, Reither K, Zimmermann MB, Risch L, Fenner L (2018) Anemia in tuberculosis cases and household controls from Tanzania: contribution of disease, coinfections, and the role of hepcidin. PLoS ONE 13(4):e0195985. https://doi.org/10.1371/journal.pone.0195985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Noto JM, Gaddy JA, Lee JY, Piazuelo MB, Friedman DB, Colvin DC, Romero-Gallo J, Suarez G, Loh J, Slaughter JC, Tan S, Morgan DR, Wilson KT, Bravo LE, Correa P, Cover TL, Amieva MR, Peek RM Jr (2013) Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J Clin Investig 123(1):479–492. https://doi.org/10.1172/JCI64373

    Article  CAS  PubMed  Google Scholar 

  91. Whary MT, Sundina N, Bravo LE, Correa P, Quinones F, Caro F, Fox JG (2005) Intestinal helminthiasis in Colombian children promotes a Th2 response to Helicobacter pylori: possible implications for gastric carcinogenesis. Cancer Epidemiol Biomark Prev 14(6):1464–1469. https://doi.org/10.1158/1055-9965.Epi-05-0095

    Article  CAS  Google Scholar 

  92. Campbell DI, Pearce MS, Parker L, Thomas JE (2004) IgG subclass responses in childhood Helicobacter pylori duodenal ulcer: evidence of T-helper cell type 2 responses. Helicobacter 9(4):289–292. https://doi.org/10.1111/j.1083-4389.2004.00234.x

    Article  CAS  PubMed  Google Scholar 

  93. Mitchell HM, Mascord K, Hazell SL, Daskalopoulos G (2001) Association between the IgG subclass response, inflammation and disease status in Helicobacter pylori infection. Scand J Gastroenterol 36(2):149–155

    Article  CAS  Google Scholar 

  94. Ek C, Whary MT, Ihrig M, Bravo LE, Correa P, Fox JG (2012) Serologic evidence that ascaris and toxoplasma infections impact inflammatory responses to Helicobacter pylori in Colombians. Helicobacter 17(2):107–115. https://doi.org/10.1111/j.1523-5378.2011.00916.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fox JG, Beck P, Dangler CA, Whary MT, Wang TC, Shi HN, Nagler-Anderson C (2000) Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy. Nat Med 6(5):536–542. https://doi.org/10.1038/75015

    Article  CAS  PubMed  Google Scholar 

  96. Geiger SM, Massara CL, Bethony J, Soboslay PT, Carvalho OS, Correa-Oliveira R (2002) Cellular responses and cytokine profiles in Ascaris lumbricoides and Trichuris trichiura infected patients. Parasite Immunol 24(11–12):499–509

    Article  CAS  Google Scholar 

  97. Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E (2018) Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization Regions. Gastroenterology 155(5):1372-1382.e1317. https://doi.org/10.1053/j.gastro.2018.07.007

    Article  PubMed  Google Scholar 

  98. Malfertheiner P, Megraud F, O’Morain CA, Gisbert JP, Kuipers EJ, Axon AT, Bazzoli F, Gasbarrini A, Atherton J, Graham DY, Hunt R, Moayyedi P, Rokkas T, Rugge M, Selgrad M, Suerbaum S, Sugano K, El-Omar EM (2017) Management of Helicobacter pylori infection—the Maastricht V/Florence consensus report. Gut 66(1):6–30. https://doi.org/10.1136/gutjnl-2016-312288

    Article  CAS  PubMed  Google Scholar 

  99. Maitre T, Aubry A, Jarlier V, Robert J, Veziris N (2017) Multidrug and extensively drug-resistant tuberculosis. Med Mal Infect 47(1):3–10. https://doi.org/10.1016/j.medmal.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  100. Mirbagheri SA, Sohrabpour AA, Hasibi M, Moghimi B, Mohamadnejad M (2005) 14C-urea breath test in patients undergoing anti-tuberculosis therapy. World J Gastroenterol 11(11):1712–1714. https://doi.org/10.3748/wjg.v11.i11.1712

    Article  PubMed  PubMed Central  Google Scholar 

  101. Boyanova L, Markovska R, Hadzhiyski P, Kandilarov N, Mitov I (2020) Rifamycin use for treatment of Helicobacter pylori infection: a review of recent data. Future Microbiol 15:1185–1196. https://doi.org/10.2217/fmb-2020-0084

    Article  CAS  PubMed  Google Scholar 

  102. Sanaka M, Kuyama Y, Yamanaka M, Iwasaki M (1999) Decrease in serum concentrations of Helicobacter pylori IgG antibodies during antituberculosis therapy: the possible eradication by rifampicin and streptomycin. Am J Gastroenterol 94(7):1983–1984. https://doi.org/10.1111/j.1572-0241.1999.1983a.x

    Article  CAS  PubMed  Google Scholar 

  103. Heep M, Rieger U, Beck D, Lehn N (2000) Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob Agents Chemother 44(4):1075–1077. https://doi.org/10.1128/aac.44.4.1075-1077.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sanaka M, Kuyama Y, Iwasaki M, Hanada Y, Tsuchiya A, Haida T, Hirama S, Yamaoka S, Yamanaka M (1998) No difference in seroprevalences of Helicobacter pylori infection between patients with pulmonary tuberculosis and those without. J Clin Gastroenterol 27(4):331–334

    Article  CAS  Google Scholar 

  105. Tsang KW, Lam S-K, Lam W-K, Karlberg J, Wong BC, Hu WH, Yew W-W, Ip MS (1998) High seroprevalence of Helicobacter pylori in active bronchiectasis. Am J Respir Crit Care Med 158(4):1047–1051. https://doi.org/10.1164/ajrccm.158.4.9712104

    Article  CAS  PubMed  Google Scholar 

  106. Mitchell HM, Li YY, Hu PJ, Liu Q, Chen M, Du GG, Wang ZJ, Lee A, Hazell SL (1992) Epidemiology of Helicobacter pylori in southern China: identification of early childhood as the critical period for acquisition. J Infect Dis 166(1):149–153

    Article  CAS  Google Scholar 

  107. Woeltje KF, Kilo CM, Johnson K, Primack J, Fraser VJ (1997) Tuberculin skin testing of hospitalized patients. Infect Control Hosp Epidemiol 18(8):561–565

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Grant 1789 from the Universidad del Valle.

Author information

Authors and Affiliations

Authors

Contributions

JABR and MAH conceived the study. JABR collected data. JABR, MAH, and MPCO wrote the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Javier Andrés Bustamante-Rengifo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Consent for Publication

All the authors have read the manuscript and have approved this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante-Rengifo, J.A., Astudillo-Hernández, M. & del Pilar Crespo-Ortiz, M. Effect of Helicobacter pylori and Helminth Coinfection on the Immune Response to Mycobacterium tuberculosis. Curr Microbiol 78, 3351–3371 (2021). https://doi.org/10.1007/s00284-021-02604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02604-8

Navigation