Skip to main content
Log in

Molecular Identification and Antimicrobial Activity of Foliar Endophytic Fungi on the Brazilian Pepper Tree (Schinus terebinthifolius) Reveal New Species of Diaporthe

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The presence of endophytes promotes the biosynthesis of secondary plant metabolites. In this study, endophytic fungi were isolated from Schinus terebinthifolius to investigate their diversity and antimicrobial activity. A total of 272 endophytic fungi was obtained. These belonged to nine different genera: Alternaria, Colletotrichum, Diaporthe, Epicoccum, Fusarium, Pestalotiopsis, Phyllosticta, Xylaria, and Cryptococcus. Notably, Diaporthe foliorum was introduced as a new species, with accompanying morphological descriptions, illustrations, and a multigene phylogenetic analysis (using ITS, TEF1, TUB, HIS, and CAL). Among the 26 fungal morphotypes evaluated for antimicrobial activity, five strains had inhibitory effects against pathogenic microorganisms. Xylaria allantoidea CMRP1424 extracts showed antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Diaporthe terebinthifolii CMRP1430 and CMRP1436 showed antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Meanwhile, D. foliorum CMRP1321 and D. malorum CMRP1438 extracts inhibited C. albicans alone. Three classes of chemical compounds were identified in D. foliorum CMRP1438 extracts: ferric chloride, potassium hydroxide, and vanillin–sulfuric acid. In conclusion, the endophytic isolates were able to produce bioactive agents with pharmaceutical potential as antibacterial and antifungal agents. As such, they may provide fresh leads in the search for new, biological sources of drug therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Petrini O (1991) Tree leaves. In: Andrews J, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  2. Yang HR, Hu XP, Jiang CJ, Qi J, Wu YC, Li W, Zeng YJ, Li CF, Liu SX (2015) Diversity and antimicrobial activity of endophytic fungi isolated from Cephalotaxus hainanensis Li, a well-known medicinal plant in China. Lett Appl Microbiol 61:484–490. https://doi.org/10.1111/lam.12483

    Article  CAS  PubMed  Google Scholar 

  3. Bayat F, Mirlohi A, Khodambashi M (2009) Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics culture. Russ J Plant Physiol 56:510–516. https://doi.org/10.1134/S1021443709040104

    Article  CAS  Google Scholar 

  4. Gundel PE, Mart MA, Batista WB, Ghersa CM (2010) Dynamics of Neotyphodium endophyte infection in ageing seed pools : incidence of differential viability loss of endophyte, infected seed and non-infected seed. Ann Appl Biol. https://doi.org/10.1111/j.1744-7348.2009.00379.x

    Article  Google Scholar 

  5. Tétard-Jones C, Edwards R (2016) Potential roles for microbial endophytes in herbicide tolerance in plants. Pest Manag Sci 72:203–209. https://doi.org/10.1002/ps.4147

    Article  CAS  PubMed  Google Scholar 

  6. Bernardi-Wenzel J, Garcia A, Azevedo JL, Pamphile JA (2013) Molecular characterization by amplified ribosomal DNA restriction analysis and antimicrobial potential of endophytic fungi isolated from Luehea divaricata (Malvaceae) against plant pathogenic fungi and pathogenic bacteria. Genet Mol Res 12:5072–5084. https://doi.org/10.4238/2013.October.29.2

    Article  CAS  PubMed  Google Scholar 

  7. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19. https://doi.org/10.1016/j.fbr.2009.07.001

    Article  Google Scholar 

  8. Strobel G (2018) Special issue: fungal endophytes in plants. J Fungi. https://doi.org/10.3390/jof4030104

    Article  Google Scholar 

  9. Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495. https://doi.org/10.1016/j.micres.2013.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pandey SS, Singh S, Babu CSV, Shanker K, Srivastava NK, Shukla AK, Kalra A (2016) Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep 6:26583. https://doi.org/10.1038/srep26583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carvalho CR, Gonçalves VN, Zani CL, Rosa CA, Rosa LH (2012) The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae ) from the Brazilian savannah. Symbiosis 57:95–107. https://doi.org/10.1007/s13199-012-0182-2

    Article  Google Scholar 

  12. Jiang S, Qian D, Yang N, Tao J, Duan J (2013) Biodiversity and antimicrobial Activity of endophytic fungi in Angelica sinensis. Chin Herb Med 5:264–271. https://doi.org/10.1016/S1674-6384(13)60039-8

    Article  Google Scholar 

  13. Carvalho MG, Melo AGN, Aragão CFS, Raffin FNN, Moura TF, a. LFAL, (2013) Schinus terebinthifolius Raddi: chemical composition, biological properties and toxicity. Rev Bras Pl Med 15:158–169. https://doi.org/10.1590/S1516-05722013000100022

    Article  Google Scholar 

  14. Rosas EC, Correa LB, Pádua TDA, Costa TEMM, Luiz Mazzei J, Heringer AP, Bizarro CA, Kaplan MAC, Figueiredo MR, Henriques MG (2015) Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. J Ethnopharmacol 175:490–498. https://doi.org/10.1016/j.jep.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  15. Gois FD, Cairo PLG, de Cantarelli VS, do Costa LCB, Fontana R, Allaman IB, Sbardella M, de Carvalho FM Jr, Costa LB (2016) Effect of Brazilian red pepper (Schinus terebinthifolius Raddi) essential oil on performance, diarrhea and gut health of weanling pigs. Livest Sci 183:24–27. https://doi.org/10.1016/j.livsci.2015.11.009

    Article  Google Scholar 

  16. Uliana MP, Fronza M, da Silva AG, Vargas TS, de Andrade TU, Scherer R (2016) Composition and biological activity of Brazilian rose pepper (Schinus terebinthifolius Raddi) leaves. Ind Crops Prod 83:235–240. https://doi.org/10.1016/j.indcrop.2015.11.077

    Article  CAS  Google Scholar 

  17. Aumeeruddy-elalfi Z, Gurib-fakim A, Mahomoodally F (2015) Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind Crop Prod 71:197–204. https://doi.org/10.1016/j.indcrop.2015.03.058

    Article  CAS  Google Scholar 

  18. Gundidza M, Gweru N, Magwa ML, Mmbengwa V, Samie A (2009) The chemical composition and biological activities of essential oil from the fresh leaves of Schinus terebinthifolius from Zimbabwe. Afr J Biotechnol 8:7164–7169. https://doi.org/10.5897/AJB09.613

    Article  CAS  Google Scholar 

  19. Santos G, Maia B, Degenhardt J, Casapula I, Gomes R, Midory M, Furuie J, Bombassaro A, Glienke C, Ribas M, Vicente VA (2017) A comparative antimicrobial activity of the Schinus terebinthifolius obtained by micropropagation and outdoor grown. Int J Plant Anim Environ Sci 6:111–118

    Google Scholar 

  20. Vicente VA, Najafzadeh MJ, Sun J, Gomes RR, Robl D, Marques SG, Azevedo CMPS, De Hoog GS (2014) Environmental siblings of black agents of human chromoblastomycosis. Fungal Divers 65:47–63. https://doi.org/10.1007/s13225-013-0246-5

    Article  Google Scholar 

  21. White TJ, Bruns T, Lee SW, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White T (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322

    Google Scholar 

  22. Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Pers Mol Phylogeny Evol Fungi 31:1–41. https://doi.org/10.3767/003158513x666844

    Article  CAS  Google Scholar 

  23. Gao Y, Liu F, Duan W, Crous PW, Cai L (2017) Diaporthe is paraphyletic. IMA Fungus 8:153–187. https://doi.org/10.5598/imafungus.2017.08.01.11

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  25. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evo 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  Google Scholar 

  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7. 0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Swofford DL (2002) PAUP 4.0b10: phylogenetic analysis using parsimony. Sinauer Associates, Sunderland

  28. Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. https://doi.org/10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  29. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science Gateway for inference of large phylogenetic trees. Gatew Comput Environ Work GCE. https://doi.org/10.1109/GCE.2010.5676129

    Article  Google Scholar 

  30. Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  32. Rambaut A, Drummond AJ, Suchard M (2013) Tracer [computer program]. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 24 Nov 2020

  33. Rambaut A (2014) FigTree, v. 1.4.2 [computer program]. Institute of evolutionary biology. University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 24 Nov 2020

  34. Crous P, Verkley G, Groenewald J, Samson R (2009) CBS Laboratory Manual Series 1: Fungal Biodiversity, 1st edn. Westerdijk Fungal Biodiversity Institute, Utrecht

    Google Scholar 

  35. Smith H, Wingfield MJ, Crous P, Coutinho TA (1996) Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. S Afr J Bot 62:86–88. https://doi.org/10.1016/S0254-6299(15)30596-2

    Article  Google Scholar 

  36. De AWL, Lima AO, de Souza Azevedo JL, de, Marcon J, (2002) Manual: isolamento de microrganismos endofíticos, 1st edn. ESALQ , Piracicaba

    Google Scholar 

  37. De Siqueira VM, Conti R, De Araújo JM, Souza-Motta CM (2011) Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 53:89–95. https://doi.org/10.1007/s13199-011-0113-7

    Article  CAS  Google Scholar 

  38. Nascimento TL, Oki Y, Lima DMM, Almeida-Cortez JS, Fernandes GW, Souza-Motta CM (2015) Biodiversity of endophytic fungi in different leaf ages of Calotropis procera and their antimicrobial activity. Fungal Ecol 14:79–86. https://doi.org/10.1016/j.funeco.2014.10.004

    Article  Google Scholar 

  39. Hormazabal E, Piontelli E (2009) Endophytic fungi from Chilean native gymnosperms : antimicrobial activity against human and phytopathogenic fungi. World J Microbiol Biotechnol 25:813–819. https://doi.org/10.1007/s11274-008-9953-6

    Article  CAS  Google Scholar 

  40. Doilom M, Dissanayake AJ, Wanasinghe DN, Boonmee S, Liu JK, Bhat DJ, Taylor JE, Bahkali AH, McKenzie EHC, Hyde KD (2017) Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Divers 82:107–182. https://doi.org/10.1007/s13225-016-0368-7

    Article  Google Scholar 

  41. Soltani J, Hosseyni Moghaddam MS (2015) Fungal endophyte diversity and bioactivity in the mediterranean cypress Cupressus sempervirens. Curr Microbiol 70:580–586. https://doi.org/10.1007/s00284-014-0753-y

    Article  CAS  PubMed  Google Scholar 

  42. Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303. https://doi.org/10.1016/j.tibtech.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Gao BL, Li XX, Bin ZZ, Yan RM, Yang HL, Zhu D (2015) Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis. Fungal Biol 119:1032–1045. https://doi.org/10.1016/j.funbio.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  44. Ding B, Yin Y, Zhang F, Li Z (2011) Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol 13:713–721. https://doi.org/10.1007/s10126-010-9333-8

    Article  CAS  Google Scholar 

  45. Wang Y, Yang M, Wang X, Li T, Kong L (2014) Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia 99:153–158. https://doi.org/10.1016/j.fitote.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  46. Zhang N, Zhang C, Xiao X, Zhang Q, Huang B (2016) New cytotoxic compounds of endophytic fungus Alternaria sp. isolated from Broussonetia papyrifera ( L.) Vent. Fitoterapia 110:173–180. https://doi.org/10.1016/j.fitote.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  47. Rojas-Jimenez K, Hernandez M, Blanco J, Vargas LD, Acosta-Vargas LG, Tamayo G (2016) Richness of cultivable endophytic fungi along an altitudinal gradient in wet forests of Costa Rica. Fungal Ecol 20:124–131. https://doi.org/10.1016/j.funeco.2015.12.006

    Article  Google Scholar 

  48. Gao Y, Liu F, Cai L (2016) Unravelling Diaporthe species associated with Camellia. Syst Biodivers 14:102–117. https://doi.org/10.1080/14772000.2015.1101027

    Article  Google Scholar 

  49. Gao X-X, Zhou H, Xu D-Y, Yu C-H, Chen Y-Q, Qu L-H (2005) High diversity of endophytic fungi from the pharmaceutical plant, Heterosmilax japonica Kunth revealed by cultivation-independent approach. FEMS Microbiol Lett 249:255–266. https://doi.org/10.1016/j.femsle.2005.06.017

    Article  CAS  PubMed  Google Scholar 

  50. de Souza LT, Cnossen-Fassoni A, Pereira OL, Mizubuti ESG, de Araújo EF, de Queiroz MV (2013) Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol 51:56–69. https://doi.org/10.1007/s12275-013-2356-x

    Article  CAS  Google Scholar 

  51. Gai CS, Lacava PT, Maccheroni W Jr, Glienke C, Araújo WL, Miller TA, Azevedo JL (2009) Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy. J Basic Microbiol 49(5):441–451. https://doi.org/10.1002/jobm.200800328

    Article  PubMed  Google Scholar 

  52. Silva-Hughes AF, Wedge DE, Cantrell CL, Carvalho CR, Pan Z, Moraes RM, Madoxx VL, Rosa LH (2015) Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States. Microbiol Res 175:67–77. https://doi.org/10.1016/j.micres.2015.03.007

    Article  PubMed  Google Scholar 

  53. Martinez-Klimova E, Rodríguez-Peña K, Sánchez S (2017) Endophytes as sources of antibiotics. Biochem Pharmacol 134:1–17. https://doi.org/10.1016/j.bcp.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  54. Macías-Rubalcava ML, Sánchez-Fernández RE (2017) Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol 33:1–22. https://doi.org/10.1007/s11274-016-2174-5

    Article  CAS  Google Scholar 

  55. Chepkirui C, Stadler M (2017) The genus Diaporthe: a rich source of diverse and bioactive metabolites. Mycol Prog 16:477–494. https://doi.org/10.1007/s11557-017-1288-y

    Article  Google Scholar 

  56. de Sena Filho JG, Quin MB, Spakowicz DJ, Shaw JJ, Kucera K, Dunican B, Strobel SA, Schmidt-Dannert C (2016) Genome of Diaporthe sp. provides insights into the potential inter-phylum transfer of a fungal sesquiterpenoid biosynthetic pathway. Fungal Biol 120:1050–1063. https://doi.org/10.1016/j.funbio.2016.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Specian V, Sarragiotto MH, Pamphile JA, Clemente E (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbiol 43:1174–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Patil M, Patil R, Mohammad S, Maheshwari V (2017) Bioactivities of phenolics-rich fraction from Diaporthe arengae TATW2, an endophytic fungus from Terminalia arjuna (Roxb.). Biocatal Agric Biotechnol 10:396–402. https://doi.org/10.1016/j.bcab.2017.05.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agency Coordination for the Improvement of Higher Education—Brazil (CAPES)—Finance Code 001. The work of Santos, G.D., and Gomes, R.R. was supported by Coordination for the Improvement of Higher Education—Brazil (CAPES), and Vicente, V.A. received fellowships from the National Council for Scientific and Technological Development (CNPq). This work was supported by the Brazilian government, the Araucaria Foundation, CAPES, and CNPq.

Funding

This study was supported by the Araucaria Foundation (http://www.fappr.pr.gov.br/), the National Council for Scientific and Technological Development (http:// www.cnpq.br/), and the Coordination for the Improvement of Higher Education (http://www.capes. gov.br/). Institutional Program of Internationalization CAPES/PrInt, Brazil: Grant number 8887.311835/2018–00-AUXPE-2796/2018.

Author information

Authors and Affiliations

Authors

Contributions

GDdS, RRG, and VAV conceived and designed the study. GDdS, RG, GF, GXS, IRC, and JD-G carried out fungi isolation and microbiological bioassays. GDdS, BHLNSM, CS-D, FG, JLMP, and MCVC-R carried out the extraction and chemical analysis of fungi extracts. GDdS, RRG, and CG contributed to phylogenetic analyzes. GDdS, RRG, and VAV prepared and critically revised the manuscript.

Corresponding authors

Correspondence to Renata R. Gomes or Vania A. Vicente.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2021_2582_MOESM3_ESM.tif

Supplementary file1 (TIF 29029 kb) Fig. 1 Supplementary- Phylogenetic tree generated from BM analysis of Diaporthe species isolated from Schinus terebinthifolius, and phylogenetically species based on the combined ITS, EF1-α, BT, HIS, and CAL sequence data. BM posterior probability (PP ≥ 0.90), RAxML bootstrap support values, and MP bootstrap support values (ML ≥ 80%) were shown at the nodes (PP/ML/MP). Diaporthella corylina (CBS 121124) was used as outgroup. Isolates obtained in this study are indicated in blue. The new species (Diaporthe foliorum) is indicated as sp. nov. *Type strain

Supplementary file2 (TIF 30155 kb)

Supplementary file3 (TIF 26945 kb)

Supplementary file4 (DOCX 116 kb)

Supplementary file5 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, G.D., Gomes, R.R., Gonçalves, R. et al. Molecular Identification and Antimicrobial Activity of Foliar Endophytic Fungi on the Brazilian Pepper Tree (Schinus terebinthifolius) Reveal New Species of Diaporthe. Curr Microbiol 78, 3218–3229 (2021). https://doi.org/10.1007/s00284-021-02582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02582-x

Navigation