Skip to main content

Advertisement

Log in

Salinimonas marina sp. nov. Isolated from Jeju Island Marine Sediment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, rod-shaped, and strictly aerobic bacterium designated strain G2-bT was isolated from the marine sediment around Jeju Island, South Korea. Strain G2-bT was found to be catalase- and oxidase-positive, white-pigmented, motile with polar flagellum, and to grow optimally at 25 °C, pH 7.0 in the presence of 4% (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain G2-bT belongs to the genus Salinimonas and was closely related Salinimonas sediminis N102T (96.7% sequence similarity), Salinimonas iocasae KX18D6T (95.4%), Salinimonas lutimaris DPSR-4T (94.7%), and Salinimonas chungwhensis BH030046T (94.6%). Strain G2-bT possessed ubiquinone 8 as the sole respiratory quinone, summed feature 3 and summed feature 8 as the major fatty acids, and phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids. The genome size and G + C content of the strain G2-bT were determined to be 3,765,169 bp, and 49.7%, respectively, as a complete circular genome. Based on the genomic analyses (e.g., average nucleotide identity and digital DNA–DNA hybridization), the strain G2-BT likely represents a new species in the genus Salinimonas, for which we propose to name this novel bacterium Salinimonas marina sp. nov., and the type strain is designated G2-BT (= KCTC 72817T = VTCC 910110T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ANI :

Average nucleotide identity

MA :

Marine agar

MB :

Marine broth

dDDH :

Digital DNA–DNA hybridization

References

  1. Jeon CO, Lim JM, Park DJ, Kim CJ (2005) Salinimonas chungwhensis gen. nov., sp. nov., a moderately halophilic bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 55(1):239–243. https://doi.org/10.1099/ijs.0.63279-0

    Article  CAS  PubMed  Google Scholar 

  2. Yoon JH, Kang SJ, Lee SY (2012) Salinimonas lutimaris sp. nov., a polysaccharide-degrading bacterium isolated from a tidal flat. Antonie Van Leeuwenhoek 101(4):803–810. https://doi.org/10.1007/s10482-011-9695-6

    Article  CAS  PubMed  Google Scholar 

  3. Cao J, Lai Q, Liu P, Wei Y, Wang L, Liu R, Fang J (2018) Salinimonas sediminis sp. nov., a piezophilic bacterium isolated from a deep-sea sediment sample from the New Britain Trench. Int J Syst Evol Microbiol 68(12):3766–3771. https://doi.org/10.1099/ijsem.0.003055

    Article  CAS  PubMed  Google Scholar 

  4. Zhang H, Wang H, Cao L, Chen H, Wang M, Lian C, Zhong Z, Li C (2020) Salinimonas iocasae sp. nov., a halophilic bacterium isolated from a polychaete tube in a hydrothermal field. Int J Syst Evol Microbiol 70(6):3899–3904. https://doi.org/10.1099/ijsem.0.004258

    Article  CAS  PubMed  Google Scholar 

  5. Zhang DF, Cui XW, Li WJ, Zhang XM, Xue HP, Huang JK, Zhang AH (2021) Description of Salinimonas profundi sp. nov., a deep-sea bacterium harboring a transposon Tn6333. Antonie Van Leeuwenhoek 114(1):69–81. https://doi.org/10.1007/s10482-020-01501-7

    Article  CAS  PubMed  Google Scholar 

  6. Kim M, Cha I-T, Lee K-E, Lee B-H, Park S-J (2021) Kineobactrum salinum sp. nov., isolated from marine sediment. Int J Syst Evolut Microbiol. https://doi.org/10.1099/ijsem.0.004586

    Article  Google Scholar 

  7. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koh HW, Hong H, Min UG, Kang MS, Kim SG, Na JG, Rhee SK, Park SJ (2015) Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int J Syst Evol Microbiol 65(12):4574–4579. https://doi.org/10.1099/ijsem.0.000614

    Article  CAS  PubMed  Google Scholar 

  9. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kimura M (1989) The neutral theory of molecular evolution and the world view of the neutralists. Genome 31(1):24–31. https://doi.org/10.1139/g89-009

    Article  CAS  PubMed  Google Scholar 

  11. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  12. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20(4):406–416

    Article  Google Scholar 

  13. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park SJ, Andrei AS, Bulzu PA, Kavagutti VS, Ghai R, Mosier AC (2020) Expanded diversity and metabolic versatility of marine nitrite-oxidizing bacteria revealed by cultivation-and genomics-based approaches. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01667-20

    Article  PubMed  PubMed Central  Google Scholar 

  16. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10(1):2182. https://doi.org/10.1038/s41467-019-10210-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50(5):1861–1868. https://doi.org/10.1099/00207713-50-5-1861

    Article  CAS  PubMed  Google Scholar 

  18. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  19. Hu HY, Fujie K, Urano K (1999) Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J Biosci Bioeng 87(3):378–382

    Article  CAS  PubMed  Google Scholar 

  20. Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241

    Article  CAS  Google Scholar 

  21. Minnikin D, Patel P, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Evol Microbiol 27(2):104–117

    CAS  Google Scholar 

  22. Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10(5):504–509. https://doi.org/10.1016/j.mib.2007.08.006

    Article  CAS  PubMed  Google Scholar 

  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  24. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Research Foundation of Korea (No. 2020R1I1A3062110) and National Institute of Biological Resourced funded by the Ministry of Environment (No. NIBR202102109 and NIBR202104104).

Author information

Authors and Affiliations

Authors

Contributions

MK and SJP designed the experiments. MK, KEL, and SJP performed the experiments. ITC and ETK gave support on the experiments. MK, ITC, and SJP analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soo-Je Park.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Lee, KE., Cha, IT. et al. Salinimonas marina sp. nov. Isolated from Jeju Island Marine Sediment. Curr Microbiol 78, 3321–3327 (2021). https://doi.org/10.1007/s00284-021-02576-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02576-9

Profiles

  1. Eui Tae Kim