Skip to main content

Advertisement

Log in

Genotypical Relationship Between Human and Poultry Strains of Campylobacter jejuni

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study aimed to compare the genotype diversity of C. jejuni isolates. From the total of 64 C. jejuni strains evaluated, 44 were isolated from broiler carcasses (2015–2016) and 20 from hospitalized patients with gastroenteritis caused by the microorganism (2000–2006). The strains were correlated for the presence of flaA, pldA, cadF, ciaB, cdtABC, luxS, dnaJ, cbrA, htrA, pVir, Hcp, cstII, and neuA genes by PCR (polymerase chain reaction) and for phylogenetic proximity by PFGE (pulsed-field gel electrophoresis). Of the total strains studied, 28 (43.7%) presented all the studied genes, except pVir. Among these strains, 25 (89.3%) were of poultry origin. Poultry strains showed a higher prevalence (P < 0.05) of genes linked to adhesion, colonization, invasion, cytotoxicity, biofilm formation, and adaptation to adverse conditions. Additionally, the profile that denotes the presence of all genes identified in the study (P1) was identified in 56.8% of poultry strains and in 15.0% of human strains. Molecular typing analysis identified five pulsotypes, none of which grouped strains from different origins. Although human strains were from hospitalized patients, they presented limited virulence capacity and adaptability to adverse conditions compared to chicken carcasses, besides being different in molecular typing. However, the ability to cause Guillain-Barré Syndrome is equal for both strains. In general, poultry strains, being more recent, are more specialized to adapt to the environment, invade, and cause disease in the human host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Associação Brasileira de Proteina Animal (2020) Relatórios anuais: Relatório anual 2020. Publishing ABPA, São Paulo, SP

  2. Centers for Disease Control and Prevention (2020) National center for emerging and zoonotic infectious diseases. Campylobacteriosis. U.S. Department of Health and Human Services, Washington, DC

  3. European Food Safety Authority (EFSA) (2020) The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA, Parma

    Book  Google Scholar 

  4. Lopes GV, Landgraf M, Destro MT (2018) Occurrence of Campylobacter in raw chicken and beef from retail outlets in São Paulo. Brazil J Food Saf 38:e12442. https://doi.org/10.1111/jfs.12442

    Article  CAS  Google Scholar 

  5. Souza CO, Vieira MACS, Batista FMA, Eulálio KD et al (2018) Serological markers of recent Campylobacter jejuni infection in patients with Guillain-Barré Syndrome in the State of Piauí, Brazil, 2014–2016. Am J Trop Med Hyg 98:586–588. https://doi.org/10.4269/ajtmh.17-0666

    Article  PubMed  PubMed Central  Google Scholar 

  6. BRASIL. Ministério da Saúde (2019) Surtos de doenças transmitidas por alimentos no Brasil, 2019. Available at https://antigo.saude.gov.br/images/pdf/2019/maio/17/Apresentacao-Surtos-DTA-Maio-2019.pdf. Acessed on 28 Jan 2021

  7. Melo RT, Grazziotin AL, Valadares Junior EC et al (2019) Evolution of Campylobacter jejuni of poultry origin in Brazil. Food Microbiol 82:489–496. https://doi.org/10.1016/j.fm.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  8. World Health Organization (2013) The global view of campylobacteriosis. WHO, Geneva

    Google Scholar 

  9. Al Amri A, Senok AC, Ismaeel AY et al (2007) Multiplex PCR for direct identification of Campylobacter spp. in human and chicken stools. J Med Microbiol. https://doi.org/10.1099/jmm.0.47220-0

    Article  PubMed  Google Scholar 

  10. Ivanovic S (2012) Campylobacter as a cause of gastroenteritis in humans and animals. Afr J Microbiol Res 6:1651–1657

    Article  Google Scholar 

  11. Nakari UM, Hakkinen M, Siitonen A (2011) Identification of persistent subtypes of Campylobacter jejuni by pulsed-field gel electrophoresis in Finland. Foodborne Pathog Dis. https://doi.org/10.1089/fpd.2011.0882

    Article  PubMed  Google Scholar 

  12. Goering RV (2010) Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2010.07.023

    Article  PubMed  Google Scholar 

  13. International Standards Organization (2006) ISO 10272-1: microbiology of food and animal feeding stuffs—horizontal method for detection and enumeration of Campylobacter spp. Part 1: detection method ISO 10272-1. ISO, Geneva

    Google Scholar 

  14. Melo RT (2017) Emergência de Campylobacter jejuni no setor avícola e na saúde pública do Brasil. Master dissertation, Federal University of Uberlandia, Uberlandia

  15. Harmon KM, Ransom GM, Wesley IV (1997) Differentiation of Campylobacter jejuni and Campylobacter coli by polymerase chain reaction. Mol Cell Probes. https://doi.org/10.1006/mcpr.1997.0104

    Article  PubMed  Google Scholar 

  16. Centers for Disease Control and prevention (CDC) (2013) Standardized laboratory protocol for molecular subtyping of Campylobacter jejuni by pulsed field gel electrophoresis (PFGE): PulseNet USA, the national molecular subtyping network for foodborne disease surveillance. CDC, Atlanta

    Google Scholar 

  17. Bacon DJ, Alm R, Burr DH et al (2000) Involvement of a plasmid in virulence of Campylobacter jejuni. Infect Immun 68:4384–4390. https://doi.org/10.1128/IAI.68.8.4384-4390.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oh JY, Kwon YK, Wei B et al (2017) Epidemiological relationships of Campylobacter jejuni strains isolated from humans and chickens in South Korea. J Microbiol. https://doi.org/10.1007/s12275-017-6308-8

    Article  PubMed  Google Scholar 

  19. Rodrigues CG, Melo RT, Fonseca BB et al (2015) Occurrence and characterization of Campylobacter spp. isolates in dogs, cats and children. Pesqui Vet Bras. https://doi.org/10.1590/S0100-736X2015000400009

    Article  Google Scholar 

  20. Frazão MR, Medeiros MIC, Da Silva DS, Falcão JP (2017) Pathogenic potential and genotypic diversity of Campylobacter jejuni: a neglected food-borne pathogen in Brazil. J Med Microbiol. https://doi.org/10.1099/jmm.0.000424

    Article  PubMed  Google Scholar 

  21. Sheppard SK, Maiden MCJ (2015) The evolution of Campylobacter jejuni and Campylobacter coli. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a018119

    Article  PubMed  PubMed Central  Google Scholar 

  22. de Nascimento Veras H, Medeiros PHQS, Ribeiro SA et al (2018) Campylobacter jejuni virulence genes and immune-inflammatory biomarkers association with growth impairment in children from Northeastern Brazil. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-018-3337-0

    Article  PubMed  Google Scholar 

  23. Tracz DM, Keelan M, Ahmed-Bentley J et al (2005) pVir and bloody diarrhea in Campylobacter jejuni enteritis. Emerg Infect Dis. https://doi.org/10.3201/eid1106.041052

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schmidt-Ott R, Pohl S, Burghard S et al (2005) Identification and characterization of a major subgroup of conjugative Campylobacter jejuni plasmids. J Infect. https://doi.org/10.1016/j.jinf.2004.02.013

    Article  PubMed  Google Scholar 

  25. Marasini D, Karki AB, Buchheim MA, Fakhr MK (2018) Phylogenetic relatedness among plasmids harbored by Campylobacter jejuni and Campylobacter coli isolated from retail meats. Front Microbiol 9:1–14. https://doi.org/10.3389/fmicb.2018.02167

    Article  Google Scholar 

  26. Iglesias-Torrens Y, Miró E, Guirado P, Llovet T, Muñoz C, Cerdà-Cuéllar M, Madrid C, Balsalobre C, Navarro F (2018) Population structure, antimicrobial resistance, and virulence-associated genes in Campylobacter jejuni isolated from three ecological niches: gastroenteritis patients, broilers, and wild birds. Front Microbiol 9:1676. https://doi.org/10.3389/fmicb.2018.01676

    Article  PubMed  PubMed Central  Google Scholar 

  27. Agnetti J, Seth-Smith HMB, Ursich S et al (2019) Clinical impact of the type VI secretion system on virulence of Campylobacter species during infection. BMC Infect Dis. https://doi.org/10.1186/s12879-019-3858-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Eucker TP, Konkel ME (2012) The cooperative action of bacterial fibronectin-binding proteins and secreted proteins promote maximal Campylobacter jejuni invasion of host cells by stimulating membrane ruffling. Cell Microbiol 14:226

    Article  CAS  Google Scholar 

  29. Poly F, Ewing C, Goon S et al (2007) Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagellar filament. Infect Immun. https://doi.org/10.1128/IAI.00159-07

    Article  PubMed  PubMed Central  Google Scholar 

  30. Feodoroff B, Ellström P, Hyytiäinen H et al (2010) Campylobacter jejuni isolates in Finnish patients differ according to the origin of infection. Gut Pathog. https://doi.org/10.1186/1757-4749-2-22

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dasti JI, Tareen AM, Lugert R et al (2010) Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol. https://doi.org/10.1016/j.ijmm.2009.07.002

    Article  PubMed  Google Scholar 

  32. Cróinín TÓ, Backert S, (2012) Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2012.00025

    Article  Google Scholar 

  33. Hardy CG, Lackey LG, Cannon J et al (2011) Prevalence of potentially neuropathic Campylobacter jejuni strains on commercial broiler chicken products. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2010.12.027

    Article  PubMed  Google Scholar 

  34. Amon P, Klein D, Springer B et al (2012) Analysis of Campylobacter jejuni isolates of various sources for loci associated with Guillain-Barré syndrome. Eur J Microbiol Immunol. https://doi.org/10.1556/eujmi.2.2012.1.4

    Article  Google Scholar 

  35. Ang CW, Laman JD, Willison HJ et al (2002) Structure of Campylobacter jejuni lipopolysaccharides determines antiganglioside specificity and clinical features of Guillain-Barré and Miller Fisher patients. Infect Immun 70:1202–1208. https://doi.org/10.1128/IAI.70.3.1202-1208.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prendergast MM, Moran AP (2000) Lipopolysaccharides in the development of the Guillain-Barré syndrome and Miller Fisher syndrome forms of acute inflammatory peripheral neuropathies. J Endotoxin Res 6:341–359

    CAS  PubMed  Google Scholar 

  37. Van Belkum A, Van Den Braak N, Godschalk P et al (2001) A Campylobacter jejuni gene associated with immune-mediated neuropathy. Nat Med. https://doi.org/10.1038/89831

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for financial support for the execution of the study.

Funding

This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, R.T.M and R.F.B.; methodology, R.T.M., C.F.D., R.F.B. and E.C.A.L; software, G.P.M. and J.P.S; validation, R.T.M. and D.A.R.; formal analysis, R.T.M. and J.P.S.; investigation, G.P.M.; resources, R.T.M. and D.A.R.; data curation, E.C.A.L.; writing-original draft preparation, R.T.M., M.G.T., C.F.D., and R.F.B.; writing-review and editing, R.T.M., M.G.T., J.P.S. and D.A.R.; visualization, G.P.M., M.G.T. and E.C.A.L.; supervision, R.T.M and D.A.R.; project administration, R.T.M. and D.A.R.; funding acquisition, R.T.M. and D.A.R. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Roberta Torres de Melo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo, R.T., Dumont, C.F., Braz, R.F. et al. Genotypical Relationship Between Human and Poultry Strains of Campylobacter jejuni. Curr Microbiol 78, 2980–2988 (2021). https://doi.org/10.1007/s00284-021-02553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02553-2

Navigation