Skip to main content
Log in

Tulbaghia violacea (Harv) Exerts its Antifungal Activity by Reducing Ergosterol Production in Aspergillus flavus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Opportunistic infections in immunosuppressed patients have led to an increase in fungal infections, with Aspergillus being one of the main causative agents. Medicinal plants exhibiting antifungal activity have the potential to be used as chemotherapeutic agents. However, often their mechanisms of action are not fully researched. Tulbaghia violacea exhibits antifungal activity towards Candida, Aspergillus flavus and Aspergillus parasiticus but its mode of action has only recently begun to be investigated. This study aimed to ascertain the effect of T. violacea rhizome extracts on ergosterol production in A. flavus and the mechanism of inhibition. The MIC of a T. violacea rhizome extract against A. flavus was first determined, using a broth dilution assay, to be 15 mg/ml. Thereafter, the culture was subjected to sub-inhibitory concentrations of the extract before sterol intermediates of the ergosterol biosynthetic pathway were isolated and analysed for dose-dependent accumulation. Analysis by reverse-phase HPLC displayed a decline in ergosterol production in a dose-dependent manner when exposed to increasing concentrations of T. violacea extract. Quantification of the sterol intermediates of the ergosterol pathway indicated a definite accumulation of 2,3-oxidosqualene. The results prove that the plant extract affected ergosterol synthesis by inhibiting oxidosqualene cyclase. This prevented the formation of downstream intermediates of the ergosterol pathway ultimately resulting in inhibition of ergosterol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pinto E, Hrimpeng K, Lopes G, Vaz S, Goncalves MJ, Cavaleiro C, Salgueiro L (2013) Antifungal activity of Ferulago capillaris essential oil against Candida, Cryptococcus, Aspergillus and dermatophyte species. Eur J Clin Microbiol Infect Dis 32(10):1311–1320. https://doi.org/10.1007/s10096-013-1881-1

    Article  CAS  PubMed  Google Scholar 

  2. Borjian Boroujeni Z, Shamsaei S, Yarahmadi M, Getso MI, Salimi Khorashad A, Haghighi L, Raissi V, Zareei M, Saleh Mohammadzade A, Moqarabzadeh V, Soleimani A, Raeisi F, Mohseni M, Mohseni MS, Raiesi O (2021) Distribution of invasive fungal infections: molecular epidemiology, etiology, clinical conditions, diagnosis and risk factors: a 3-year experience with 490 patients under intensive care. Microb Pathog 152:104616. https://doi.org/10.1016/j.micpath.2020.104616

    Article  CAS  PubMed  Google Scholar 

  3. Tian J, Ban X, Zeng H, He J, Chen Y, Wang Y (2012) The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS ONE 7(1):e30147. https://doi.org/10.1371/journal.pone.0030147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hokken MWJ, Zwaan BJ, Melchers WJG, Verweij PE (2019) Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genet Biol 132:103254. https://doi.org/10.1016/j.fgb.2019.103254

    Article  CAS  PubMed  Google Scholar 

  5. Aldardeer NF, Albar H, Al-Attas M, Eldali A, Qutub M, Hassanien A, Alraddadi B (2020) Antifungal resistance in patients with candidaemia: a retrospective cohort study. BMC Infect Dis 20(1):55. https://doi.org/10.1186/s12879-019-4710-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arif T, Mandal T, Dabur R (2011) Natural products: antifungal agents derived from plants. In: Tiwari V, Mishra B (eds) Opportunity, challenge and scope of natural products in medicinal chemistry. Research Signpost, Kerala

    Google Scholar 

  7. Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin AA Jr, Ikryannikova LN (2020) Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics? Antibiotics (Basel). https://doi.org/10.3390/antibiotics9040170

    Article  Google Scholar 

  8. Saibu G, Katerere D, Rees D, Meyer M (2015) In vitro cytotoxic and pro-apoptotic effects of water extracts of Tulbaghia violacea leaves and bulbs. J Ethnopharmacol 164:203–209. https://doi.org/10.1016/j.jep.2015.01.040

    Article  CAS  PubMed  Google Scholar 

  9. Motsei ML, Lindsey KL, van Staden J, Jäger AK (2003) Screening of traditionally used South African plants for antifungal activity against Candida albicans. J Ethnopharmacol 86:235–241. https://doi.org/10.1016/s0378-8741(03)00082-5

    Article  CAS  PubMed  Google Scholar 

  10. Nteso L, Pretorius JC (2006) Tulbaghia violacea L. I: in vitro antimicrobial properties towards plant pathogens. Aust J Agric Res 57(5):511–516. https://doi.org/10.1071/ar05206

    Article  Google Scholar 

  11. Somai BM, Belewa V (2011) Aqueous extracts of Tulbaghia violacea inhibit germination of Aspergillus flavus and Aspergillus parasiticus conidia. J Food Prot 74(6):1007–1011. https://doi.org/10.4315/0362-028X.JFP-10-434

    Article  PubMed  Google Scholar 

  12. Belewa V, Baijnath H, Frost C, Somai B (2017) Tulbaghia violacea Harv. plant extract affects cell wall synthesis in Aspergillus flavus. J Appl Microbiol 122:921–931. https://doi.org/10.1111/jam.13405

    Article  CAS  PubMed  Google Scholar 

  13. Pattoo M, Belewa V, Somai BM (2019) Phytochemical constituents of Tulbaghia violacea Harv extract and its antifungal potential against Cryptococcus neoformans and Cryptococcus gattii. Nat Prod J 9(4):330–340. https://doi.org/10.2174/2210315509666181214154345

    Article  CAS  Google Scholar 

  14. Garbeva P, Hordijk C, Gerards S, de Boer W (2014) Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 87(3):639–649. https://doi.org/10.1111/1574-6941.12252

    Article  CAS  PubMed  Google Scholar 

  15. Giorgio A, De Stradis A, Lo Cantore P, Lacobellis NS (2015) Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front Microbiol 6:1056. https://doi.org/10.3389/fmicb.2015.01056

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yirankinyuki F, Danbature W, Silas T, Poloma A (2017) Characterization and determination of antifungal activities of essential oil extracted from the bark of Afrostyrax lepidophyllus “Country Onion or Shirum.” Biochem Mol Biol 2(5):29–33

    Google Scholar 

  17. Jung K-H, Yoo S, Moon S-K, Lee U-S (2007) Furfural from pine needle extract inhibits the growth of a plant pathogenic fungus Alternaria mali. Mycobiology 35(1):39–43. https://doi.org/10.4489/MYCO.2007.35.1.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamid A, Oguntoye S, Alli S, Akomolafe G, Aderinto A, Otitigbe A, Ogundare A, Esinniobiwa Q, Aminu R (2016) Chemical composition, antimicrobial and free radical scavenging activities of Grewia pubescens. Chem Int 2(4):254–261. https://doi.org/10.5281/zenodo.1471429

    Article  CAS  Google Scholar 

  19. Jorda T, Puig S (2020) Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes (Basel). https://doi.org/10.3390/genes11070795

    Article  Google Scholar 

  20. Belewa V, Baijnath H, Somai BM (2011) Aqueouse extracts from the bulbs of Tulbaghia violacea are antifungal against Aspergillus flavus. J Food Saf 31(2):176–184. https://doi.org/10.1111/j.1745-4565.2010.00282.x

    Article  Google Scholar 

  21. Birch M, Drucker D, Riba I, Gaskell S, Denning D (1998) Polar lipids of Aspergillus fumigatus, A. niger, A. nidulans, A. flavus and A. terreus. Med Mycol 36:127–134. https://doi.org/10.1080/02681219880000211

    Article  CAS  PubMed  Google Scholar 

  22. Bligh E, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37(8):911–917. https://doi.org/10.1139/y59-099

    Article  CAS  Google Scholar 

  23. Fowler S, Brown W, Warfel J, Greenspan P (1987) Use of nile red for the rapid in situ quantitation of lipids on thin layer chromatograms. J Lipid Res 28:1225–1232

    Article  CAS  Google Scholar 

  24. Alcazar-Fuoli L, Mellado E, Garcia-Effron G, Lopez JF, Grimalt JO, Cuenca-Estrella JM, Rodriguez-Tudela JL (2008) Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids 73(3):339–347. https://doi.org/10.1016/j.steroids.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  25. Arthington-Skaggs B, Warnock D, Morrison C (2000) Quantitation of Candida albicans ergosterol content improves the correlation between in vitro antifungal susceptibility test results and in vivo outcome after fluconazole treatment in a murine model of invasive candidiasis. Antimicrob Agents Chemother 44(8):2081–2085. https://doi.org/10.1128/aac.44.8.2081-2085.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiocchio V, Matković L (2011) Determination of ergosterol in cellular fungi by HPLC. A modified technique. J Argent Chem Soc 98:10–15

    CAS  Google Scholar 

  27. Xu J-W, Xu Y-N, Zhong J-J (2010) Production of individual ganoderic acids and expression of biosynthetic genes in liquid static and shaking cultures of Ganoderma lucidum. Appl Microbiol Biotechnol 85:941–948. https://doi.org/10.1007/s00253-009-2106-5

    Article  CAS  PubMed  Google Scholar 

  28. Desimoni E, Brunetti B (2015) About estimating the limit of detection by the signal to noise approach. Pharm Anal Acta 06(04):355. https://doi.org/10.4172/2153-2435.1000355

    Article  Google Scholar 

  29. Shrivastava A, Gupta V (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2(1):21. https://doi.org/10.4103/2229-5186.79345

    Article  Google Scholar 

  30. Yuan J-P, Wang J-H, Liu X, Kuang H-C, Zhao S-Y (2007) Simultaneous determination of free ergosterol and ergosteryl esters in Cordyceps sinensis by HPLC. Food Chem 105(4):1755–1759. https://doi.org/10.1016/j.foodchem.2007.04.070

    Article  CAS  Google Scholar 

  31. Borelli C, Schaller M, Niewerth M, Nocker K, Baasner B, Berg D, Tiemann R, Tietjen K, Fugmann B, Lang-Fugmann S, Korting HC (2008) Modes of action of the new arylguanidine abafungin beyond interference with ergosterol biosynthesis and in vitro activity against medically important fungi. Chemotherapy 54(4):245–259. https://doi.org/10.1159/000142334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alcazar-Fuoli L, Mellado E (2013) Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. Front Microbiol. https://doi.org/10.3389/fmicb.2012.00439

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lupetti A, Danesi R, Campa M, Del Tacca M, Kelly S (2002) Molecular basis of resistance to azole antifungals. Trends Mol Med 8(2):76–81. https://doi.org/10.1016/s1471-4914(02)02280-3

    Article  CAS  PubMed  Google Scholar 

  34. Gauwerky K, Borelli C, Korting HC (2009) Targeting virulence: a new paradigm for antifungals. Drug Discov Today 14(3–4):214–222. https://doi.org/10.1016/j.drudis.2008.11.013

    Article  CAS  PubMed  Google Scholar 

  35. Goldman R, Zakula D, Capobianco J, Sharpe B, Griffin J (1996) Inhibition of 2,3-oxidosqualene-lanosterol cyclase in Candida albicans by pyridinium ion-based inhibitors. Antimicrob Agents Chemother 40(4):1044–1047. https://doi.org/10.1128/AAC.40.4.1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ness F, Achstetter T, Duport C, Karst F, Spagnoli R, Degryse E (1998) Sterol uptake in Saccharomyces cerevisiae heme auxotrophic mutants is affected by ergosterol and oleate but not by palmitoleate or by sterol esterification. J Bacteriol 180(7):1913–1919. https://doi.org/10.1128/JB.180.7.1913-1919.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72(6):435–457. https://doi.org/10.1016/j.phytochem.2011.01.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof Baijnath (UKZN) for providing plant material and verifying its identity. Funding was provided by the National Research Foundation (Grant Number: TTK14061870154) and Nelson Mandela University.

Author information

Authors and Affiliations

Authors

Contributions

All authors cited in this manuscript contributed equally to the work.

Corresponding author

Correspondence to Benesh M. Somai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somai, B.M., Belewa, V. & Frost, C. Tulbaghia violacea (Harv) Exerts its Antifungal Activity by Reducing Ergosterol Production in Aspergillus flavus. Curr Microbiol 78, 2989–2997 (2021). https://doi.org/10.1007/s00284-021-02546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02546-1

Navigation