Skip to main content

Advertisement

Log in

Aspergillus fumigatus Induces the Release of IL-8 and MCP-1 by Activating Nuclear Transcription Through Dectin-1 and CR3 Receptors in Alveolar Epithelial Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Invasive pulmonary aspergillosis induced by the pathogenic fungus Aspergillus fumigatus is one of the common fatal complications in immunocompromised patients. Lung epithelial cells play an important role in host immune defense against A. fumigatus. However, the interaction between lung epithelial cells and A. fumigatus conidia is not fully understood. In this study, we used the swollen conidia of A. fumigatus to stimulate the type II lung epithelial A549 cells. Results showed that swollen conidia could significantly increase RNA transcription and protein expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1), but not TNF-α in A549 cells in a time-dependent manner. Moreover, serum opsonization was able to improve the release of inflammatory factors induced by swollen conidia. Blocking of the dectin-1 or CR3 receptors, or both simultaneously, in the A549 cells could decrease the release of IL-8 and MCP-1. Additionally, blocking dectin-1 or CR3 could inhibit the transcription of nuclear factor NF-κB that was activated by swollen conidia. Here we reported for the first time that dectin-1 and CR3 receptors in A549 cells mediate the release of pro-inflammatory factors IL-8 and MCP-1 induced by A. fumigatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abad A et al (2010) What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 27(4):155–182

    Article  PubMed  Google Scholar 

  2. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A (2017) The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(17)30316-X

    Article  PubMed  Google Scholar 

  3. Albader N et al (2010) Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 78(7):3007–3018

    Article  CAS  Google Scholar 

  4. Pizarro-Cerda J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124(4):715–727

    Article  CAS  PubMed  Google Scholar 

  5. Sisson TH et al (2010) Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 181(3):254–263

    Article  CAS  PubMed  Google Scholar 

  6. Brown GD et al (2002) Dectin-1 is a major β-glucan receptor on macrophages. J Exp Med 196(3):407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ito T et al (2017) Dectin-1 plays an important role in house dust mite-induced allergic airway inflammation through the activation of CD11b+ dendritic cells. J Immunol 198(1):61–70

    Article  CAS  PubMed  Google Scholar 

  8. Ito T et al (2017) Dectin-1 plays an important role in house dust mite-induced allergic airway inflammation through the activation of CD11b<sup>+</sup> dendritic cells. J Immunol 198(1):61

    Article  CAS  PubMed  Google Scholar 

  9. Sun WK et al (2012) Dectin-1 is inducible and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial epithelial cells. Eur J Clin Microbiol Infect Dis 31(10):2755–2764

    Article  CAS  PubMed  Google Scholar 

  10. Xu Q et al (2015) Role of Dectin-1 in the innate immune response of rat corneal epithelial cells to Aspergillus fumigatus. BMC Ophthalmol 15:126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Heyl KA et al (2014) Dectin-1 is expressed in human lung and mediates the proinflammatory immune response to nontypeable Haemophilus influenzae. MBio 5(5):e01492-e1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han X et al (2011) Beta-1,3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells. PLoS One 6(7):e21468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wright SD et al (1991) Activation of the adhesive capacity of CR3 on neutrophils by endotoxin: dependence on lipopolysaccharide binding protein and CD14. J Exp Med 173(5):1281–1286

    Article  CAS  PubMed  Google Scholar 

  14. Ross GD, Cain JA, Lachmann PJ (1985) Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin as functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. J Immunol 134(5):3307–3315

    CAS  PubMed  Google Scholar 

  15. Sándor N et al (2013) CR3 is the dominant phagocytotic complement receptor on human dendritic cells. Immunobiology 218(4):652–663

    Article  PubMed  CAS  Google Scholar 

  16. Becker KL et al (2015) Pattern recognition pathways leading to a Th2 cytokine bias in allergic bronchopulmonary aspergillosis patients. Clin Exp Allergy 45(2):423–437

    Article  CAS  PubMed  Google Scholar 

  17. Khan NS et al (2016) Dectin-1 controls TLR9 trafficking to phagosomes containing β-1,3 glucan. J Immunol 196(5):2249

    Article  CAS  PubMed  Google Scholar 

  18. Botterel F et al (2008) Phagocytosis of Aspergillus fumigatus conidia by primary nasal epithelial cells in vitro. BMC Microbiol 8:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kauffman HF et al (2000) Protease-dependent activation of epithelial cells by fungal allergens leads to morphological changes and cytokine production. J Allergy Clin Immunol 105(6 Pt 1):1185

    Article  CAS  PubMed  Google Scholar 

  20. Ghasemi H et al (2011) Roles of IL-8 in ocular inflammations: a review. Ocul Immunol Inflamm 19(6):401–412

    Article  CAS  PubMed  Google Scholar 

  21. Yadav A, Saini V, Arora S (2010) MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 411(21–22):1570–1579

    Article  CAS  PubMed  Google Scholar 

  22. Chen F et al (2015) Transcriptome profiles of human lung epithelial cells A549 interacting with Aspergillus fumigatus by RNA-Seq. Plos One 10(8):e0135720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jia X et al (2017) Role of actin depolymerizing factor cofilin in Aspergillus fumigatus oxidative stress response and pathogenesis. Curr Genet 64(Suppl 1):1–16

    Google Scholar 

  24. Xu D et al (2015) Fungus induces the release of IL-8 in human corneal epithelial cells, via Dectin-1-mediated protein kinase C pathways. Int J Ophthalmol 8(3):441

    PubMed  PubMed Central  Google Scholar 

  25. Du J et al (2018) Crocin reduces A. fumigatus-induced airway inflammation and NF-κB signal activation. J Cell Biochem 119(2):1746

    Article  CAS  PubMed  Google Scholar 

  26. Kelly MN et al (2013) Memory CD4+ T cells are required for optimal NK cell effector functions against the opportunistic fungal pathogen Pneumocystis murina. J Immunol 190(1):285–295

    Article  CAS  PubMed  Google Scholar 

  27. Majumder S et al (2012) TNF α signaling beholds thalidomide saga: a review of mechanistic role of TNF-α signaling under thalidomide. Curr Top Med Chem 12(13):1456–1467

    Article  CAS  PubMed  Google Scholar 

  28. Zhao Y et al (2017) Role of dectin-1 in the production of IL-10 and TNF-α by rat tracheal epithelial cells stimulated with heat-treated Candida glabrata. Chin J Infect Control 16:10–15

    Google Scholar 

  29. Kozel TR et al (1989) Activation of C3 and binding to Aspergillus fumigatus conidia and hyphae. Infect Immun 57(11):3412–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sturtevant JE, Latgé JP (1992) Interactions between conidia of Aspergillus fumigatus and human complement component C3. Infect Immun 60(5):1913–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rao X et al (2013) An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath 3(3):71–85

    Google Scholar 

  32. Sun J et al (2004) Ketamine suppresses endotoxin-induced NF-κB activation and cytokines production in the intestine. Acta Anaesthesiol Scand 48(3):317

    Article  CAS  PubMed  Google Scholar 

  33. Sheu SJ et al (2015) Differential effects of bevacizumab, ranibizumab and aflibercept on cell viability, phagocytosis and mitochondrial bioenergetics of retinal pigment epithelial cell. Acta Ophthalmol 93(8):e631

    Article  CAS  PubMed  Google Scholar 

  34. Yao Y et al (2016) Balance between inflammatory and regulatory cytokines in systemic lupus erythematosus. Genet Mol Res. https://doi.org/10.4238/gmr.15027626

    Article  PubMed  Google Scholar 

  35. Reddy S et al (2017) Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complicat 31(5):804–809

    Article  Google Scholar 

  36. Zhao XK et al (2016) Tristetraprolin down-regulation contributes to persistent TNF-alpha expression induced by cigarette smoke extract through a post-transcriptional mechanism. PLoS One 11(12):e0167451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Matsukawa A et al (1997) Analysis of the inflammatory cytokine network among TNF alpha, IL-1 beta, IL-1 receptor antagonist, and IL-8 in LPS-induced rabbit arthritis. Lab Investig 76(5):629–638

    CAS  PubMed  Google Scholar 

  38. Jia X et al (2017) Role of actin depolymerizing factor cofilin in Aspergillus fumigatus oxidative stress response and pathogenesis. Curr Genet. https://doi.org/10.1007/s00294-017-0777-5

    Article  PubMed  Google Scholar 

  39. Bellanger AP et al (2009) Aspergillus fumigatus germ tube growth and not conidia ingestion induces expression of inflammatory mediator genes in the human lung epithelial cell line A549. J Med Microbiol 58(Pt 2):174–179

    Article  CAS  PubMed  Google Scholar 

  40. Jean-Yves C et al (2008) Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genom 9(1):417

    Article  CAS  Google Scholar 

  41. Brown GD et al (2003) Dectin-1 mediates the biological effects of β-glucans. J Exp Med 197(9):1119–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Viriyakosol S et al (2005) Innate immunity to the pathogenic fungus Coccidioides posadasii is dependent on toll-like receptor 2 and dectin-1. Infect Immun 73(3):1553–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Steele C et al (2003) Alveolar macrophage–mediated killing of Pneumocystis carinii f sp. muris involves molecular recognition by the dectin-1 β-glucan receptor. J Exp Med 198(11):1677–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Steele C et al (2005) The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. Plos Pathog 1(4):e42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gersuk GM et al (2006) Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol 176(6):3717

    Article  CAS  PubMed  Google Scholar 

  46. Hohl TM et al (2005) Aspergillus fumigatus triggers inflammatory responses by stage-specific β-glucan display. Plos Pathog 1(3):e30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gessner MA et al (2012) Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun 80(1):410–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jessica LW et al (2011) Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23-dependent manner during invasive fungal infection. Infect Immun 79(10):3966

    Article  CAS  Google Scholar 

  49. Seifert PS, Hansson GK (1989) Complement receptors and regulatory proteins in human atherosclerotic lesions. Arteriosclerosis 9(6):802

    Article  CAS  PubMed  Google Scholar 

  50. O’Brien XM et al (2012) Lectin site ligation of CR3 induces conformational changes and signaling. J Biol Chem 287(5):3337–3348

    Article  CAS  PubMed  Google Scholar 

  51. Ricardo-Carter C et al (2013) Leishmania major inhibits IL-12 in macrophages by signaling through CR3 (CD11b/CD18) and downregulation of ETS-mediated transcription. Parasite Immunol 35(12):409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Le CV et al (2002) Complement receptor 3 (CD11b/CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J Immunol 169(4):2003–2009

    Article  Google Scholar 

  53. Sun H et al (2014) Activation of NF-kappaB and respiratory burst following Aspergillus fumigatus stimulation of macrophages. Immunobiology 219(1):25–36

    Article  CAS  PubMed  Google Scholar 

  54. Shibakura M et al (2003) Induction of IL-8 and monoclyte chemoattractant protein-1 by doxorubicin in human small cell lung carcinoma cells. Int J Cancer 103(3):380–386

    Article  CAS  PubMed  Google Scholar 

  55. Ma L et al (2010) The relationship between methylation of the Syk gene in the promoter region and the genesis of lung cancer. Clin Lab 56(9–10):407–416

    CAS  PubMed  Google Scholar 

  56. Leibundgutlandmann S et al (2008) Stimulation of dendritic cells via the dectin-1/Syk pathway allows priming of cytotoxic T-cell responses. Blood 112(13):4971–4980

    Article  CAS  Google Scholar 

  57. Wu S-Y et al (2017) Cell intrinsic galectin-3 attenuates neutrophil ROS-dependent killing of candida by modulating CR3 downstream Syk activation. Front Immunol 8:48

    PubMed  PubMed Central  Google Scholar 

  58. Wagener M, Hoving JC, Ndlovu H, Marakalala MJ (2018) Dectin-1-Syk-CARD9 signaling pathway in TB immunity. Front Immunol. https://doi.org/10.3389/fimmu.2018.00225

    Article  PubMed  PubMed Central  Google Scholar 

  59. Huang JH et al (2015) CR3 and Dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk-JNK-AP-1 pathway. PLoS Pathog 11(7):e1004985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. M. Moore and Dr. K.J. Kwon-Chung for kindly providing A. fumigatus ATCC13073 strain. This work was supported by the Chinese National Scientific Foundation (Grant Nos. 81273229 and 81471565).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Sun or Xuelin Han.

Ethics declarations

Conflict of interest

All the authors have no competing interest to declare.

Ethical Approval

This research did not involve any human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Z., Wang, S. et al. Aspergillus fumigatus Induces the Release of IL-8 and MCP-1 by Activating Nuclear Transcription Through Dectin-1 and CR3 Receptors in Alveolar Epithelial Cells. Curr Microbiol 78, 3474–3482 (2021). https://doi.org/10.1007/s00284-021-02534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02534-5

Navigation