Skip to main content

Advertisement

Log in

Characterization of Clinical Isolates of Mycobacterium simiae Using Drug Susceptibility Tests and Molecular Analyses

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mycobacterium simiae is an emerging nontuberculous mycobacterium (NTM) and an opportunistic pathogen which is described mainly in Asia and presents in the environment that can cause pulmonary infection. The objective of this study is to characterize M. simiae clinical isolates using mycobacterial interspersed repetitive unit variable-number tandem repeats (MIRU-VNTR) typing for the differentiation of the strains. A total of 169 clinical isolates of NTM were recovered from patients suspected of having tuberculosis (TB)-like and related infections. After isolation and identification of mycobacterial strains by conventional biochemical and PCR-based tests, M. simiae strains were confirmed using restriction fragment length polymorphism (RFLP)-based identification assay. Furthermore, drug susceptibility and MIRU-VNTR typing was performed using on the clinical isolates of M. simiae. Out of 169 NTM strains, 92 (54.4%) isolates were identified as M. simiae. Antibiotic susceptibility experiments indicated that all 92 M. simiae isolates were resistant to first line antimycobacterial agents. Moreover, 8 (8.6%) M. simiae isolates were resistant to ciprofloxacin; and 6 (6.5%) were resistant to both amikacin and kanamycin, while the remaining were susceptible to second line antimycobacterial agents. MIRU-VNTR analysis showed that the M. simiae isolates were classified in four distinct M. simiae clusters and two single types. The minimum spanning analysis revealed that the isolates were grouped in three complexes. The data suggested that MIRI-VNTR typing is useful for typing of M. simiae isolates, however, MIRU-16 locus was absolutely absent in M. simiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data used to support this study are available from the corresponding author upon request.

Abbreviations

NTM:

Nontuberculous mycobacteria

MOTT:

Mycobacteria other than tuberculosis

VNTR:

Variable-number tandem-repeat

RFLP:

Restriction fragment length polymorphism

References

  1. Falzon D, Mirzayev F, Wares F, Baena IG, Zignol M, Linh N, Weyer K, Jaramillo E, Floyd K, Raviglione M (2015) Multidrug-resistant tuberculosis around the world: what progress has been made? Eur Respir J 45(1):150–160. https://doi.org/10.1183/09031936.00101814

    Article  PubMed  Google Scholar 

  2. Glaziou P, Sismanidis C, Floyd K, Raviglione M (2014) Global epidemiology of tuberculosis. Cold Spring Harb Perspect Med 5(2):a017798–a017798. https://doi.org/10.1101/cshperspect.a017798

    Article  CAS  PubMed  Google Scholar 

  3. Velayati AA, Farnia P (2017) The species concept. In: Velayati AA, Farnia P (eds) Atlas of Mycobacterium tuberculosis. Academic Press, Boston, pp 1–16. https://doi.org/10.1016/B978-0-12-803808-6.00001-3

    Chapter  Google Scholar 

  4. Ahmed I, Jabeen K, Hasan R (2013) Identification of non-tuberculous mycobacteria isolated from clinical specimens at a tertiary care hospital: a cross-sectional study. BMC Infect Dis 13:493–493. https://doi.org/10.1186/1471-2334-13-493

    Article  PubMed  PubMed Central  Google Scholar 

  5. Velayati AA, Rahideh S, Nezhad ZD, Farnia P, Mirsaeidi M (2015) Nontuberculous mycobacteria in Middle East: current situation and future challenges. Int J Mycobacteriol 4(1):7–17. https://doi.org/10.1016/j.ijmyco.2014.12.005

    Article  PubMed  Google Scholar 

  6. Yu X, Liu P, Liu G, Zhao L, Hu Y, Wei G, Luo J, Huang H (2016) The prevalence of non-tuberculous mycobacterial infections in mainland China: systematic review and meta-analysis. J Infect 73(6):558–567. https://doi.org/10.1016/j.jinf.2016.08.020

    Article  PubMed  Google Scholar 

  7. Otchere ID, Asante-Poku A, Osei-Wusu S, Aboagye SY, Yeboah-Manu D (2017) Isolation and characterization of nontuberculous mycobacteria from patients with pulmonary tuberculosis in Ghana. Int J Mycobacteriol 6(1):70–75. https://doi.org/10.4103/2212-5531.201895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Falkinham JO 3rd (2013) Ecology of nontuberculous mycobacteria—where do human infections come from? Semin Respir Crit Care Med 34(1):95–102. https://doi.org/10.1055/s-0033-1333568

    Article  PubMed  Google Scholar 

  9. Falkinham JO 3rd (2016) Current epidemiologic trends of the nontuberculous mycobacteria (NTM). Curr Environ Health Rep 3(2):161–167. https://doi.org/10.1007/s40572-016-0086-z

    Article  CAS  PubMed  Google Scholar 

  10. Matsumoto Y, Kinjo T, Motooka D, Nabeya D, Jung N, Uechi K, Horii T, Iida T, Fujita J, Nakamura S (2019) Comprehensive subspecies identification of 175 nontuberculous mycobacteria species based on 7547 genomic profiles. Emerg Microbes Infect 8(1):1043–1053. https://doi.org/10.1080/22221751.2019.1637702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hashemi-Shahraki A, Darban-Sarokhalil D, Heidarieh P, Feizabadi MM, Deshmir-Salameh S, Khazaee S, Alavi SM (2013) Mycobacterium simiae: a possible emerging pathogen in Iran. Jpn J Infect Dis 66(6):475–479

    Article  PubMed  Google Scholar 

  12. Fusco da Costa AR, Fedrizzi T, Lopes ML, Pecorari M, Oliveira da Costa WL, Giacobazzi E, da Costa Bahia JR, De Sanctis V, Batista Lima KV, Bertorelli R, Grottola A, Fabio A, Mariottini A, Ferretti P, Di Leva F, Fregni Serpini G, Tagliazucchi S, Rumpianesi F, Jousson O, Segata N, Tortoli E (2015) Characterization of 17 strains belonging to the Mycobacterium simiae complex and description of Mycobacterium paraense sp. nov. Int J Syst Evol Microbiol 65(Pt 2):656–662. https://doi.org/10.1099/ijs.0.068395-0

    Article  CAS  PubMed  Google Scholar 

  13. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ, Winthrop K (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175(4):367–416. https://doi.org/10.1164/rccm.200604-571ST

    Article  CAS  PubMed  Google Scholar 

  14. Baghaei P, Tabarsi P, Farnia P, Marjani M, Sheikholeslami FM, Chitsaz M, Gorji Bayani P, Shamaei M, Mansouri D, Masjedi MR, Velayati AA (2012) Pulmonary disease caused by Mycobacterium simiae in Iran’s National Referral Center for Tuberculosis. J Infect Dev Ctries 6(1):23–28. https://doi.org/10.3855/jidc.1297

    Article  PubMed  Google Scholar 

  15. Baghizadeh A, Mehrian P, Farnia P (2017) Computed tomography findings of pulmonary Mycobacterium simiae infection. Can Respir J 2017:5. https://doi.org/10.1155/2017/6913564

    Article  Google Scholar 

  16. Braun-Saro B, Esteban J, Jimenez S, Castrillo JM, Fernandez-Guerrero ML (2002) Mycobacterium simiae infection in an immunocompromised patient without acquired immunodeficiency syndrome. Clin Infect Dis 34(5):E26-27. https://doi.org/10.1086/338874

    Article  PubMed  Google Scholar 

  17. Shitrit D, Peled N, Bishara J, Priess R, Pitlik S, Samra Z, Kramer MR (2008) Clinical and radiological features of Mycobacterium kansasii infection and Mycobacterium simiae infection. Respir Med 102(11):1598–1603. https://doi.org/10.1016/j.rmed.2008.05.004

    Article  PubMed  Google Scholar 

  18. van Ingen J, Totten SE, Heifets LB, Boeree MJ, Daley CL (2012) Drug susceptibility testing and pharmacokinetics question current treatment regimens in Mycobacterium simiae complex disease. Int J Antimicrob Agents 39(2):173–176. https://doi.org/10.1016/j.ijantimicag.2011.09.019

    Article  CAS  PubMed  Google Scholar 

  19. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44(12):4498–4510. https://doi.org/10.1128/jcm.01392-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cangelosi GA, Freeman RJ, Lewis KN, Livingston-Rosanoff D, Shah KS, Milan SJ, Goldberg SV (2004) Evaluation of a high-throughput repetitive-sequence-based PCR system for DNA fingerprinting of Mycobacterium tuberculosis and Mycobacterium avium complex strains. J Clin Microbiol 42(6):2685–2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Falkinham JO III (2011) Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis 17(3):419–424. https://doi.org/10.3201/eid1703.101510

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tuberculosis Chemotherapy C (1960) A concurrent comparison of isoniazid plus PAS with three regimens of isoniazid alone in the domiciliary treatment of pulmonary tuberculosis in South India. Bull World Health Organ 23(4–5):535–585

    Google Scholar 

  23. Strong BE, Kubica GP (1981) Isolation and identification of Mycobacterium tuberculosis—a guide for the level II laboratory US Department of Health and Human Services. Public Health Service Atlanta: Centers for Disease Control, Atlanta

    Google Scholar 

  24. Eisenach KD, Cave MD, Bates JH, Crawford JT (1990) Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis 161(5):977–981. https://doi.org/10.1093/infdis/161.5.977

    Article  CAS  PubMed  Google Scholar 

  25. Brunello F, Ligozzi M, Cristelli E, Bonora S, Tortoli E, Fontana R (2001) Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J Clin Microbiol 39(8):2799–2806. https://doi.org/10.1128/JCM.39.8.2799-2806.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang Z, Durmaz R, Yang D, Gunal S, Zhang L, Foxman B, Sanic A, Marrs CF (2005) Simultaneous detection of isoniazid, rifampin, and ethambutol resistance of Mycobacterium tuberculosis by a single multiplex allele-specific polymerase chain reaction (PCR) assay. Diagn Microbiol Infect Dis 53(3):201–208. https://doi.org/10.1016/j.diagmicrobio.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  27. Pitaksajjakul P, Wongwit W, Punprasit W, Eampokalap B, Peacock S, Ramasoota P (2005) Mutations in the gyrA and gyrB genes of fluoroquinolone-resistant Mycobacterium tuberculosis from TB patients in Thailand. Southeast Asian J Trop Med Public Health 36(Suppl 4):228–237

    CAS  PubMed  Google Scholar 

  28. Mokrousov I, Narvskaya O, Limeschenko E, Otten T, Vyshnevskiy B (2002) Detection of ethambutol-resistant Mycobacterium tuberculosis strains by multiplex allele-specific PCR assay targeting embB306 mutations. J Clin Microbiol 40(5):1617–1620. https://doi.org/10.1128/jcm.40.5.1617-1620.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Supply P (2005) Multilocus variable number tandem repeat genotyping of Mycobacterium tuberculosis. Tech Guide 6:1–74

    Google Scholar 

  30. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26(11):2465–2466. https://doi.org/10.1128/JCM.26.11.2465-2466.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cruz AT, Goytia VK, Starke JR (2007) Mycobacterium simiae complex infection in an immunocompetent child. J Clin Microbiol 45(8):2745–2746. https://doi.org/10.1128/JCM.00359-07

    Article  PubMed  PubMed Central  Google Scholar 

  32. Maoz C, Shitrit D, Samra Z, Peled N, Kaufman L, Kramer M, Bishara J (2008) Pulmonary Mycobacterium simiae infection: comparison with pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis 27(10):945–950. https://doi.org/10.1007/s10096-008-0522-6

    Article  CAS  PubMed  Google Scholar 

  33. Velayati AA, Farnia P (eds) (2019) Nontuberculous mycobacteria (NTM): microbiological clinical and geographical distribution. Academic Press, Cambridge

    Google Scholar 

  34. Narang R, Narang P, Jain AP, Mendiratta DK, Joshi R, Lavania M, Das R, Katoch VM (2010) Disseminated disease caused by Mycobacterium simiae in AIDS patients: a report of three cases. Clin Microbiol Infect 16(7):912–914. https://doi.org/10.1111/j.1469-0691.2009.03021.x

    Article  CAS  PubMed  Google Scholar 

  35. Lévy-Frébault V, Pangon B, Buré A, Katlama C, Marche C, David HL (1987) Mycobacterium simiae and Mycobacterium avium-Mintracellulare mixed infection in acquired immune deficiency syndrome. J Clin Microbiol 25(1):154–157. https://doi.org/10.1128/JCM.25.1.154-157.1987

    Article  PubMed  PubMed Central  Google Scholar 

  36. Onen Z, Karahan ZC, Yildiz OA, Karabiyikoglu G (2010) Mycobacterium simiae infection in an immunocompetent patient, with DNA analyses verification. Tuberk Toraks 58:306–310

    PubMed  Google Scholar 

  37. Hamieh A, Tayyar R, Tabaja H, Zein EL, Bou S, Khalil P, Kara N, Kanafani ZA, Kanj N, Bou Akl I, Araj G, Berjaoui G, Kanj SS (2018) Emergence of Mycobacterium simiae: a retrospective study from a tertiary care center in Lebanon. PLoS ONE 13(4):e0195390–e0195390. https://doi.org/10.1371/journal.pone.0195390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Legrand E, Goh KS, Sola C, Rastogi N (2000) Description of a novel Mycobacterium simiae allelic variant isolated from Caribbean AIDS patients by PCR-restriction enzyme analysis and sequencing of hsp65 gene. Mol Cell Probes 14(6):355–363. https://doi.org/10.1006/mcpr.2000.0325

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez-Temporal D, Rodríguez-Sánchez B, Alcaide F (2020) Evaluation of MALDI biotyper interpretation criteria for accurate identification of nontuberculous mycobacteria. J Clin Microbiol 58(10):e01103-01120. https://doi.org/10.1128/JCM.01103-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mazars E, Lesjean S, Bañuls A-L, Gilbert M, Vincent V, Gicquel B, Tibayrenc M, Locht C, Supply P (2001) High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci USA 98(4):1901–1906. https://doi.org/10.1073/pnas.98.4.1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dauchy F-A, Dégrange S, Charron A, Dupon M, Xin Y, Bébéar C, Maugein J (2010) Variable-number tandem-repeat markers for typing Mycobacterium intracellulare strains isolated in humans. BMC Microbiol 10:93. https://doi.org/10.1186/1471-2180-10-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thibault VC, Grayon M, Boschiroli ML, Hubbans C, Overduin P, Stevenson K, Gutierrez MC, Supply P, Biet F (2007) New variable-number tandem-repeat markers for typing Mycobacterium avium subsp. paratuberculosis and M. avium strains: comparison with IS900 and IS1245 restriction fragment length polymorphism typing. J Clin Microbiol 45(8):2404–2410. https://doi.org/10.1128/JCM.00476-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heidari F, Farnia P, Noorozi J, Majd A (2011) Evaluation of genetic pattern of non-tuberculosis mycobacterium using VNTR method. Qom Univ Med Sci J 5(2):3–11

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences and the Department of Microbiology affiliated to Islamic Azad University Branch of Karaj for supporting this project.

Funding

This work was supported by the National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parissa Farnia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

The study protocol was approved by the Institutional Ethical Review Committee of Shahid Beheshti University of Medical Sciences (approval number: IR.SMU.NRITLD.REC.1397.564).

Consent to Participate

In this study, informed consents were obtained from all subjects and/or their legal guardians prior to sample collection.

Consent for Publication

All authors consent to the publication of the manuscript in Current Microbiology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezhkhi, H., Farnia, P., Haddadi, A. et al. Characterization of Clinical Isolates of Mycobacterium simiae Using Drug Susceptibility Tests and Molecular Analyses. Curr Microbiol 78, 2324–2331 (2021). https://doi.org/10.1007/s00284-021-02486-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02486-w

Navigation