Skip to main content
Log in

Survival of Salmonella Under Heat Stress is Associated with the Presence/Absence of CRISPR Cas Genes and Iron Levels

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) cas genes have been linked to stress response in Salmonella. Our aim was to identify the presence of CRISPR cas in Salmonella and its response to heat in the presence of iron. Whole genomes of Salmonella (n = 50) of seven serovars were compared to identify the presence of CRISPR cas genes, direct-repeats and spacers. All Salmonella genomes had all cas genes present except S. Newport 2393 which lacked these genes. Gene-specific primers were used to confirm the absence of these genes in S. Newport 2393. The presence/absence of CRISPR cas genes was further investigated among 469 S. Newport genomes from PATRIC with 283 genomes selected for pan-genome analysis. The response of eleven Salmonella strains of various serovars to gradual heat in ferrous and ferric forms of iron was investigated. A total of 32/283 S. Newport genomes that lacked all CRISPR cas genes clustered together. S. Newport 2393 was the most heat-sensitive strain at higher iron levels (200 and 220 pm) in ferrous and ferric forms of iron. The absence of CRISPR cas genes in S. Newport 2393 may contribute to its increase in heat sensitivity and iron may play a role in this. The high reduction in numbers of most Salmonella strains exposed to heat makes it unfeasible to extract RNA and conduct transcription studies. Further studies should be conducted to validate the survival of Salmonella when exposed to heat in the presence/absence of CRISPR cas genes and different iron levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The whole-genome shotgun project sequences of Salmonella strains isolated from red meat have been deposited at the PATRIC database and DDBJ/ENA/GenBank under the accession numbers listed in Supplementary Table S1. All publicly available whole-genome sequence of S. Newport genomes were obtained from the PATRIC database under the accession numbers listed in Supplementary Table S2.

References

  1. World Health Organization (WHO) (2018) Salmonella (non-typhoidal). World Health Organization, Geneva, Switzerland. http://www.who.int/mediacentre/factsheets/fs139/en/. Accessed 5 May 2020.

  2. Sarjit A, Ravensdale JT, Coorey R, Dykes GA (2021) Salmonella survival after exposure to heat in a model meat juice system. Food Microbiol 94:103628. https://doi.org/10.1016/j.fm.2020.103628

    Article  CAS  PubMed  Google Scholar 

  3. Jerome JP, Bell JA, Plovanich-Jones AE, Barrick JE, Brown CT, Mansfield LS (2011) Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host. PLoS One 6:e16399. https://doi.org/10.1371/journal.pone.0016399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Louwen R, Staals RH, Endtz HP, van Baarlen P, van der Oost J (2014) The role of CRISPR–Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev 78:74–88. https://doi.org/10.1128/MMBR.00039-13

    Article  PubMed  PubMed Central  Google Scholar 

  5. Perez-Rodriguez R, Haitjema C, Huang Q, Nam KH, Bernardis S, Ke A, DeLisa MP (2011) Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. Mol Microbiol 79:584–599. https://doi.org/10.1111/j.1365-2958.2010.07482.x

    Article  CAS  PubMed  Google Scholar 

  6. Sheikh A, Charles RC, Sharmeen N, Rollins SM, Harris JB, Bhuiyan MS, Arifuzzaman M, Khannam F, Bukka A, Kalsy A, Porwollik S, Leung DT, Brooks WA, LaRocque RC, Hohmann EL, Cravioto A, Logvinenko T, Calderwood SB, McClelland M, Graham JE, Qadri F, Ryan ET (2011) In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh. PLoS Neglect Tropical D 5:e1419. https://doi.org/10.1371/journal.pntd.0001419

    Article  CAS  Google Scholar 

  7. Stacy A, Abraham N, Jorth P, Whiteley M (2016) Microbial community composition impacts pathogen iron availability during polymicrobial infection. PLoS Pathog 12:e1006084. https://doi.org/10.1371/journal.ppat.1006084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Jong AEI, van Asselt ED, Zwietering MH, Nauta MJ, de Jonge R (2011) Extreme heat resistance of food borne pathogens Campylobacter jejuni, Escherichia coli, and Salmonella typhimurium on chicken breast fillet during cooking. Int J Microbiol. https://doi.org/10.1155/2012/196841

    Article  Google Scholar 

  9. Kortman GA, Boleij A, Swinkels DW, Tjalsma H (2012) Iron availability increases the pathogenic potential of Salmonella Typhimurium and other enteric pathogens at the intestinal epithelial interface. PLoS One 7:e29968. https://doi.org/10.1371/journal.pone.0029968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186. https://doi.org/10.1038/nrmicro1793

    Article  CAS  PubMed  Google Scholar 

  11. Touchon M, Rocha EP (2010) The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS One 5:e11126. https://doi.org/10.1371/journal.pone.0011126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horwath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477. https://doi.org/10.1038/nrmicro2577

    Article  CAS  PubMed  Google Scholar 

  13. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170. https://doi.org/10.1126/science.1179555

    Article  CAS  PubMed  Google Scholar 

  14. Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496. https://doi.org/10.1093/nar/30.2.482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yosef I, Goren MG, Kiro R, Edgar R, Qimron U (2011) High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. Proc. Natl Acad Sci USA 108:20136–20141. https://doi.org/10.1073/pnas.1113519108

    Article  PubMed  PubMed Central  Google Scholar 

  16. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60. https://doi.org/10.1371/journal.pcbi.0010060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shariat N, Dudley EG (2014) CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 80:430-439.https://doi.org/https://doi.org/10.1128/AEM.02790-13

  18. Pettengill JB, Timme RE, Barrangou R, Toro M, Allard MW, Strain E, Musser SM, Brown EW (2014) The evolutionary history and diagnostic utility of the CRISPR-Cas system within Salmonella enterica ssp. enterica. PeerJ 2: 340. https://doi.org/https://doi.org/10.7717/peerj.340

  19. Fegan N, Vanderlinde P, Higgs G, Desmarchelier P (2004) Quantification and prevalence of Salmonella in beef cattle presenting at slaughter. J Appl. Microbiol 97:892–898. https://doi.org/10.1111/j.1365-2672.2004.02380.x

    Article  CAS  PubMed  Google Scholar 

  20. Duffy LL, Barlow R, Fegan N, Vanderlinde P (2009) Prevalence and serotypes of Salmonella associated with goats at two Australian abattoirs. Lett Appl Microbiol 48:193–197. https://doi.org/10.1111/j.1472-765X.2008.02501.x

    Article  CAS  PubMed  Google Scholar 

  21. Duffy LL, Small A, Fegan N (2010) Concentration and prevalence of Escherichia coli O157 and Salmonella serotypes in sheep during slaughter at two Australian abattoirs. Aust Vet J 88:399–404. https://doi.org/10.1111/j.1751-0813.2010.00623.x

    Article  CAS  PubMed  Google Scholar 

  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olsen R, Overbeek R, Parello B, Pusch GD, Shukla M, Thompson JA III, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S, Fedorov B, Kiryutin B, O’Neill K, Resch W, Resenchuk S, Schafer S, Tolstoy I, Tatusova T (2009) The national center for biotechnology information’s protein clusters database. Nucleic Acids Res 37:D216–D223. https://doi.org/10.1093/nar/gkn734

    Article  CAS  PubMed  Google Scholar 

  25. Auch AF, von Jan M, Klenk HP, Goker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genom Sci 2:117–134

    Article  Google Scholar 

  26. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 4:D535–D542. https://doi.org/10.1093/nar/gkw1017

    Article  CAS  Google Scholar 

  27. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190. https://doi.org/10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DiMarzio MJ, Shariat N, Kariyawasam S, Barrangou R, Dudley EG (2013) Antibiotic resistance in Salmonella enterica serovar Typhimurium associates with CRISPR sequence type. Antimicrob Agents Chemother 57:4282–4289. https://doi.org/10.1128/AAC.00913-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2014) Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  Google Scholar 

  30. Laing CR, Whiteside MD, Gannon VPJ (2017) Pangenome analyses of the species Salmonella enterica, and identification of genomic markers predictive for species, subspecies, and serovar. Front Microbiol 8:1–16. https://doi.org/10.3389/fmicb.2017.01345

    Article  Google Scholar 

  31. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. https://doi.org/10.1093/bioinformatics/btv421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Terabayashi Y, Juan A, Tamotsu H, Ashimine N, Nakano K, Shimoji M, Shiroma A, Teruya K, Satou K, Hirano T (2014) First complete genome sequence of Salmonella enterica subsp. enterica serovar Typhimurium strain ATCC 13311 (NCTC 74), a reference strain of multidrug resistance, as achieved by use of PacBio single molecule real-time technology. Genome Announc 2:e00986-14. https://doi.org/10.1128/genomeA.00986-14

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kang D, Fung D (2000) Application of thin agar layer method for recovery of injured Salmonella Typhimurium. Int J Food Microbiol 54:127–132. https://doi.org/10.1016/S0168-1605(99)00174-9

    Article  CAS  PubMed  Google Scholar 

  34. Thompson CP, Doak AN, Amirani N, Schroeder EA, Wright J, Kariyawasam S, Lamendella R, Shariat NW (2018) High-resolution identification of multiple Salmonella serovars in a single sample by using CRISPRSeroSeq. Appl Environ Microbiol 84:e01859-18. https://doi.org/10.1128/AEM.01859-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beloglazova N, Petit P, Flick R, Brown G, Savchenko A, Yakunin AF (2011) Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J 30:4616–4627. https://doi.org/10.1038/emboj.2011.377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40:5569–5576. https://doi.org/10.1093/nar/gks216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fu S, Hiley L, Octavia S, Sintchenko V, Tanaka M, Lan R (2017) Comparative genomics of Australian and international isolates of SalmonellaTyphimurium: correlation of core genome evolution with CRISPR and prophage profiles. Sci Rep 7:9733. https://doi.org/10.1038/s41598-017-06079-1

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shariat N, Timme RE, Pettengill JB, Barrangou R, Dudley EG (2015) Characterization and evolution of Salmonella CRISPR-Cas systems. Microbiology 161:374–386. https://doi.org/10.1099/mic.0.000005

    Article  CAS  PubMed  Google Scholar 

  39. Xie X, Hu Y, Xu Y, Yin K, Li Y, Chen Y, Xia J, Xu L, Liu Z, Geng S, Li Q, Jiao X, Chen X, Pan Z (2017) Genetic analysis of Salmonella enterica serovar Gallinarum biovar Pullorum based on characterization and evolution of CRISPR sequence. Vet. Microbiol 203:81–87. https://doi.org/10.1016/j.vetmic.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  40. Medina-Aparicio L, Rebollar-Flores JE, Beltran-Luviano AA, Vazquez A, Gutierrez-Rios RM, Olvera L, Calva E, Hernandez-Lucas I (2017) CRISPR-Cas system presents multiple transcriptional units including antisense RNAs that are expressed in minimal medium and upregulated by pH in Salmonella enterica serovar Typhi. Microbiology 163:253–265. https://doi.org/10.1099/mic.0.000414

    Article  CAS  PubMed  Google Scholar 

  41. Ono S, Goldberg MD, Olsson T, Esposito D, Hinton JCD, Ladbury JE (2005) H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem J 391:203–213. https://doi.org/10.1042/BJ20050453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kobayashi H, Miyamoto T, Hashimoto Y, Kiriki M, Motomatsu A, Honjoh K-I, Iio M (2005) Identification of factors involved in recovery of heat-injured Salmonella enteritidis. J Food Prot 68:932–941. https://doi.org/10.4315/0362-028X-68.5.932

    Article  CAS  PubMed  Google Scholar 

  43. Guisbert E, Yura T, Rhodius VA, Gross CA (2008) Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 72:545–554. https://doi.org/10.1128/MMBR.00007-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sirsat SA, Burkholder KM, Muthaiyan A, Dowd SE, Bhunia AK, Ricke SC (2011) Effect of sublethal heat stress on Salmonella typhimurium virulence. J Applied Microbiol 110:813–822. https://doi.org/10.1111/j.1365-2672.2011.04941.x

    Article  CAS  Google Scholar 

  45. Danilowa N (2020) Stress Response and Immunity: Links and Trade Offs. Bentham Science Publishers, Singapore

    Book  Google Scholar 

  46. Samuels DJ, Frye JG, Porwollik S, McClelland M, Mrázek J, Hoover TR, Karls AC (2013) Use of a promiscuous, constitutivelyactive bacterial enhancer-binding protein to define the s54 (RpoN) regulon of Salmonella Typhimurium LT2. BMC Genom 14:602. https://doi.org/10.1186/1471-2164-14-602

    Article  CAS  Google Scholar 

  47. Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B, Gagarinova A, Pogoutse O, Brown G, Binkowski A, Phanse S, Joachimiak A, Koonin EV, Savchenko A, Emili A, Greenblatt J, Edwards AM, Yakunin AF (2011) A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502. https://doi.org/10.1111/j.1365-2958.2010.07465.x

    Article  CAS  PubMed  Google Scholar 

  48. Sarjit A, Ravensdale JT, Coorey R, Fegan N, Dykes GA (2019) Draft genome sequences of four antibiotic resistant Salmonella strains isolated from Australian red meat animal species. Microbiol Resour Announc 8:e00925-19. https://doi.org/10.1128/MRA.00925-19

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lau CK, Krewulak KD, Vogel HJ (2016) Bacterial ferrous iron transport: the Feo system. FEMS Microbiol Rev 40:273–298. https://doi.org/10.1093/femsre/fuv049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Australian Meat Processors Corporation (AMPC).

Author information

Authors and Affiliations

Authors

Contributions

AS carried out the experiments, analysed the data and drafted the manuscript. JTR, RC and NF reviewed and revised the manuscript for intellectual content. GAD contributed to the conception and design of the study, reviewed and revised the manuscript.

Corresponding author

Correspondence to Gary A. Dykes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarjit, A., Ravensdale, J.T., Coorey, R. et al. Survival of Salmonella Under Heat Stress is Associated with the Presence/Absence of CRISPR Cas Genes and Iron Levels. Curr Microbiol 78, 1741–1751 (2021). https://doi.org/10.1007/s00284-021-02443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02443-7

Navigation