Skip to main content

Advertisement

Log in

Determination of Microbial Diversity and Community Composition in Unfermented and Fermented Washing Rice Water by High-Throughput Sequencing

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Washing rice water (WRW) refers to the sewage produced by rice washing in China and other parts of Asia people's daily life. As in the WRW is rich a variety of nutrients, microorganisms are prone to multiply and pollute the environment. In this article, high-throughput sequencing is used to describe the microbial diversity in different fermentation time WRW. The results showed that the sequencing depth effectively covered the microbial species in the samples, and the bacterial community structure in the samples of WRW at different fermentation periods was rich in diversity. Preominant taxa included Proteobacteria (62%), Firmicutes (28%), approximately Cyanobacteria (10%) and Bacteroidetes (0.5%). The core WRW microbiome comprises Trabulsiella, Pseudomonas, Serratia, Lactobacillus, Erwinia, Enterobacter, Clostridium and Acinetobacter, some of which are potential beneficial microbes. The change of microbial community composition with the change of habitat was assessed. It was found that environmental factors had significant influence on the assembly structure of microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen B, Hu Z, Li H, Li Z, Li Q, Chen Y (2019) Intact starch granules for pickering emulsion: exploring mechanism of cleaning with washing rice water and floury soup. Colloid Surf A 561:155–164. https://doi.org/10.1016/j.colsurfa.2018.10.045

    Article  CAS  Google Scholar 

  2. Lam S, Velikov KP, Velev OD (2014) Pickering stabilization of foams and emulsions with particles of biological origin. Curr Opin Colloid Interface Sci. https://doi.org/10.1016/j.cocis.2014.07.003

    Article  Google Scholar 

  3. Han S-W, Chee K-M, Cho S-J (2015) Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chem. https://doi.org/10.1016/j.foodchem.2014.09.127

    Article  PubMed  Google Scholar 

  4. Choi JS, Jeon MH, Moon WS, Moon JN, Cheon EJ, Kim JW, Jung SK, Ji YH, Son SW, Kim MR (2014) In vivo hair growth-promoting effect of rice bran extract prepared by supercritical carbon dioxide fluid. Biol Pharm Bull 37(1):44–53. https://doi.org/10.1248/bpb.b13-00528

    Article  CAS  PubMed  Google Scholar 

  5. Mendel F (2013) Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells. J Agric Food Chem. https://doi.org/10.1021/jf403635v

    Article  Google Scholar 

  6. Li W, Xiaoxuan L, Zhengxing C (2009) Sulfated modification of the polysaccharides obtained from defatted rice bran and their antitumor activities. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2008.12.006

    Article  PubMed  Google Scholar 

  7. Edwards J, Johnson C, Santosmedellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112(8):201414592. https://doi.org/10.1073/pnas.1414592112

    Article  CAS  Google Scholar 

  8. Zhang Y, Xu J, Riera N, Jin T, Li J, Wang N (2017) Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome. https://doi.org/10.1186/s40168-017-0304-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Walters WA, Jin Z, Youngblut ND, Wallace JG, Sutter JL, Zhang W, Gonzalezpena A, Peiffer JA, Koren O, Shi Q (2018) Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci USA 115(28):7368–7373. https://doi.org/10.1073/pnas.1800918115

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marasco R, Rolli E, Fusi M, Michoud G, Daffonchio D (2018) Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome 6(1):3. https://doi.org/10.1186/s40168-017-0391-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, Botha FC, Anderson IC, Singh BK (2018) Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol 20(1):124–140. https://doi.org/10.1111/1462-2920.14031

    Article  CAS  PubMed  Google Scholar 

  12. Atashgahi S, Sanchezandrea I, Heipieper HJ, Der Meer JRV, Stams AJM, Smidt H (2018) Prospects for harnessing biocide resistance for bioremediation and detoxification. Science 360(6390):743–746. https://doi.org/10.1126/science.aar3778

    Article  CAS  PubMed  Google Scholar 

  13. Urakawa H, Martenshabbena W, Stahl DA (2010) High abundance of ammonia-oxidizing archaea in coastal waters, determined using a modified DNA extraction method. Appl Environ Microbiol 76(7):2129–2135. https://doi.org/10.1128/AEM.02692-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caporaso JG, Lauber CL, Walters WA, Berglyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  15. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  17. Lozupone CA, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5(2):169–172. https://doi.org/10.1038/ismej.2010.133

    Article  PubMed  Google Scholar 

  18. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol ECOL 62(2):142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.x

    Article  CAS  PubMed  Google Scholar 

  19. Zaura E, Keijser BJF, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9(1):259–259. https://doi.org/10.1186/1471-2180-9-259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLOS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000352

    Article  PubMed  PubMed Central  Google Scholar 

  21. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73(5):1576–1585. https://doi.org/10.1128/AEM.01996-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delgadobaquerizo M, Oliverio AM, Brewer TE, Benaventgonzalez A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359(6373):320–325. https://doi.org/10.1126/science.aap9516

    Article  CAS  Google Scholar 

  24. Perez-Jaramillo JE, Carrion VJ, Bosse M, Ferrao LFV, de Hollander M, Garcia AAF, Ramirez CA, Mendes R, Raaijmakers JM (2017) Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J 11(10):2244–2257. https://doi.org/10.1038/ismej.2017.85

    Article  PubMed  PubMed Central  Google Scholar 

  25. Muyzer G, De Waal EC, Uitterlinden GA (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700. https://doi.org/10.1128/AEM.59.3.695-700.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Preza D, Olsen I, Willumsen T, Boches SK, Cotton SL, Grinde B, Paster BJ (2009) Microarray analysis of the microflora of root caries in elderly. Eur J Clin Microbiol 28:509–517. https://doi.org/10.1007/s10096-008-0662-8)

    Article  Google Scholar 

  27. De Paepe K, Verspreet J, Courtin CM, De Wiele TV (2020) Microbial succession during wheat bran fermentation and colonisation by human faecal microbiota as a result of niche diversification. ISME J 14(2):584–596. https://doi.org/10.1038/s41396-019-0550-5

    Article  CAS  PubMed  Google Scholar 

  28. Song C, Wang B, Tan J, Zhu L, Lou D, Cen X (2016) Comparative analysis of the gut microbiota of black bears in China using high-throughput sequencing. Mol Genet Genomics 292(2):407–414. https://doi.org/10.1007/s00438-016-1282-0

    Article  CAS  PubMed  Google Scholar 

  29. Kim M, Morrison M, Yu Z (2011) Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods 84(1):81–87. https://doi.org/10.1016/j.mimet.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  30. Ling Z, Kong J, Jia P, Wei C, Wang Y, Pan Z, Huang W, Li L, Chen H, Xiang C (2010) Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol 60(3):677–690. https://doi.org/10.1007/s00248-010-9712-8

    Article  CAS  PubMed  Google Scholar 

  31. Xiao C, Ran S, Huang Z, Liang J (2016) Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16S pyrosequencing. Front Microbiol 7:1145. https://doi.org/10.3389/fmicb.2016.01145

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE. https://doi.org/10.1371/journal.pone.0027310

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dai Z, Sevillano-Rivera MC, Calus ST et al (2020) Disinfection exhibits systematic impacts on the drinking water microbiome. Microbiome 8:42. https://doi.org/10.1186/s40168-020-00813-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fang R, Dong Y, Chen F, Chen Q (2015) Bacterial diversity analysis during the fermentation processing of traditional Chinese yellow rice wine revealed by 16S rDNA 454 pyrosequencing. J Food Sci. https://doi.org/10.1111/1750-3841.13018

    Article  PubMed  Google Scholar 

  35. Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254(1):1–11. https://doi.org/10.1111/j.1574-6968.2005.00001.x

    Article  CAS  PubMed  Google Scholar 

  36. Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587(17):4153–4158. https://doi.org/10.1113/jphysiol.2009.174136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neu J, Lorca GL, Kingma SDK, Triplett EW (2010) The intestinal microbiome: relationship to type 1 diabetes. Endocrinol Metab Clin N Am 39(3):563–571. https://doi.org/10.1016/j.ecl.2010.05.008

    Article  CAS  Google Scholar 

  38. Tilg H (2010) Obesity, metabolic syndrome, and microbiota: multiple interactions. J Clin Gastroenterol. https://doi.org/10.1097/MCG.0b013e3181dd8b64

    Article  PubMed  Google Scholar 

  39. Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Colettafilho HD (2018) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9(1):4894. https://doi.org/10.1038/s41467-018-07343-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14(1):4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x

    Article  CAS  PubMed  Google Scholar 

  41. Lemanceau P, Blouin M, Muller D, Moenneloccoz Y (2017) Let the core microbiota be functional. Trends Plant Sci 22(7):583–595. https://doi.org/10.1016/j.tplants.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  42. Yeoh YK, Dennis PG, Paungfoolonhienne C, Weber LC, Brackin R, Ragan MA, Schmidt S, Hugenholtz P (2017) Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8(1):215. https://doi.org/10.1038/s41467-017-00262-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bulgarelli D, Rott M, Schlaeppi K, Van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95. https://doi.org/10.1038/nature11336

    Article  CAS  PubMed  Google Scholar 

  44. Jin T, Wang Y, Huang Y, Xu J, Zhang P, Wang N, Liu X, Chu H, Liu G, Jiang H (2017) Taxonomic structure and functional association of foxtail millet root microbiome. GigaScience 6(10):1–12. https://doi.org/10.1093/gigascience/gix089

    Article  PubMed  PubMed Central  Google Scholar 

  45. Riera N, Handique U, Zhang Y, Dewdney MM, Wang N (2017) Characterization of antimicrobial-producing beneficial bacteria isolated from Huanglongbing escape citrus trees. Front Microbiol 8:2415–2415. https://doi.org/10.3389/fmicb.2017.02415

    Article  PubMed  PubMed Central  Google Scholar 

  46. Trivedi P, He Z, Van Nostrand JD, Albrigo G, Zhou J, Wang N (2012) Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME J 6(2):363–383. https://doi.org/10.1038/ismej.2011.100

    Article  CAS  PubMed  Google Scholar 

  47. Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17(3):610–621. https://doi.org/10.1111/1462-2920.12452

    Article  PubMed  Google Scholar 

  48. Leff JW, Jones SE, Prober SM, Barberan A, Borer ET, Firn J, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA 112(35):10967–10972. https://doi.org/10.1073/pnas.1508382112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Hainan Province of China (2019RC128; 2019RC120) and the Hainan University Start-up Scientific Research Projects of China (kyqd1630, kyqd1551).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijun Chen or Wenxue Chen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chen, H., Zhong, Q. et al. Determination of Microbial Diversity and Community Composition in Unfermented and Fermented Washing Rice Water by High-Throughput Sequencing. Curr Microbiol 78, 1730–1740 (2021). https://doi.org/10.1007/s00284-021-02400-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02400-4

Navigation