Skip to main content
Log in

Complete Genome Sequence of Pedobacter sp. PAMC26386 and Their Low Temperature Application in Arabinose-containing Polysaccharides Degradation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pedobacter are a representative genus of soil-associated bacteria. Here we have provided the complete genome sequence of Pedobacter sp. PAMC26386 isolated from Antarctic soil, and functionally annotated the genome, describing the unique features of carbohydrate active enzymes (CAZymes) and α-L-arabinofuranosidase (α-L-ABF). The genome of Pedobacter sp. PAMC26386 is circular and comprises 4,796,773 bp, with a 38.2% GC content. The genome encodes 4,175 genes, including 7 rRNA and 44 tRNA genes. We identified 172 genes (8 auxiliary activities, 8 carbohydrate binding modules, 23 carbohydrate esterases, 86 glycoside hydrolases, 42 glycosyl transferases, and 5 polysaccharide lyases) related to CAZymes using the dbCAN2 tool. We checked enzyme activity on 11 substrates using the AZCL assay and obtained strong activity for arabinooligosaccharide and hemicellulose. This includes information regarding α-L-ABF, which is active at low temperatures, based on the annotation results. Our findings on Pedobacter sp. PAMC26386 provide the basis for research in the future. The favorable properties of Pedobacter sp. PAMC26386 make it a good candidate for industrial applications involving low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K, Joubert JJ (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48(1):165–177. https://doi.org/10.1099/00207713-48-1-165

    Article  CAS  PubMed  Google Scholar 

  2. Wei Y, Wang B, Zhang L, Zhang J, Chen S (2018) Pedobacter yulinensis sp. nov., isolated from sandy soil, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 68(8):2523–2529. https://doi.org/10.1099/ijsem.0.002868

    Article  CAS  PubMed  Google Scholar 

  3. Zhang B, Liu ZQ, Zheng YG (2018) Pedobacter quisquiliarum sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 68(1):438–442. https://doi.org/10.1099/ijsem.0.002531

    Article  CAS  PubMed  Google Scholar 

  4. Hwang CY, Choi DH, Cho BC (2006) Pedobacter roseus sp. nov., isolated from a hypertrophic pond, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 56(8):1831–1836. https://doi.org/10.1099/ijs.0.64045-0

    Article  CAS  PubMed  Google Scholar 

  5. Joung Y, Jang HJ, Park M, Song J, Cho JC (2018) Pedobacter aquicola sp. nov., isolated from freshwater. J Microbiol 56(7):478–484. https://doi.org/10.1007/s12275-018-7499-3

    Article  CAS  PubMed  Google Scholar 

  6. Gao JL, Sun P, Mao XJ, Du YL, Liu BY, Sun JG (2017) Pedobacter zeae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 67(2):231–236. https://doi.org/10.1099/ijsem.0.001603

    Article  CAS  PubMed  Google Scholar 

  7. Covas C, Caetano T, Cruz A, Santos T, Dias L, Klein G, Abdulmawjood A, Rodríguez-Alcalá LM, Pimentel LL, Gomes A, Freitas AC, Garcia-Serrano A, Fontecha J, Mendo S (2017) Pedobacter lusitanus sp. nov., isolated from sludge of a deactivated uranium mine. Int J Syst Evol Microbiol 67(5):1339–1348. https://doi.org/10.1099/ijsem.0.001814

    Article  CAS  PubMed  Google Scholar 

  8. Švec P, Králová S, Busse HJ, Kleinhagauer T, Pantůček R, Mašlaňová I, Cnockaert M, Vandamme P, Staňková E, Gelbíčová T, Holochová P, Barták M, Kýrová K, Sedláček I (2017) Pedobacter jamesrossensis sp. nov., Pedobacter lithocola sp. nov., Pedobacter mendelii sp. nov. and Pedobacter petrophilus sp. nov., isolated from the Antarctic environment. Int J Syst Evol Microbiol 67(5):1499–1507. https://doi.org/10.1099/ijsem.0.001749

    Article  CAS  PubMed  Google Scholar 

  9. Margesin R, Sproer C, Schumann P, Schinner F (2003) Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53(5):1291–1296. https://doi.org/10.1099/ijs.0.02436-0

    Article  CAS  PubMed  Google Scholar 

  10. He XY, Li N, Chen XL, Zhang YZ, Zhang XY, Song XY (2020) Pedobacter indicus sp. nov., isolated from deep-sea sediment. Antonie Van Leeuwenhoek 113(3):357–364. https://doi.org/10.1007/s10482-019-01346-9

    Article  CAS  PubMed  Google Scholar 

  11. Kangale LJ, Raoult D, Ghigo E, Fournier PE (2020) Pedobacter schmidteae sp. nov., a new bacterium isolated from the microbiota of the planarian Schmidtea mediterranea. Sci Rep. https://doi.org/10.1038/s41598-020-62985-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sheehan J, Aden A, Paustian K, Killian K, Brenner J, Walsh M, Nelson R (2008) Energy and environmental aspects of using corn stover for fuel ethanol. J Ind Ecol 7(3–4):117–146. https://doi.org/10.1162/108819803323059433

    Article  Google Scholar 

  13. Wang L, Sharifzadeh M, Templer R, Murphy RJ (2013) Bioethanol production from various waste papers: Economic feasibility and sensitivity analysis. Appl Energy 111:1172–1182. https://doi.org/10.1016/j.apenergy.2012.08.048

    Article  CAS  Google Scholar 

  14. Geng A, Wu J, Xie R, Wang H, Wu Y, Li X, Chang F, Sun J (2019) Highly thermostable GH51 α-arabinofuranosidase from Hungateiclostridium clariflavum DSM 19732. Appl Microbiol Biotechnol 103(9):3783–3793. https://doi.org/10.1007/s00253-019-09753-8

    Article  CAS  PubMed  Google Scholar 

  15. McGregor NGS, Artola M, Nin-Hill A, Linzel D, Haon M, Reijngoud J, Ram A, Rosso MN, van der Marel GA, Codée JDC, van Wezel GP, Berrin JG, Rovira C, Overkleeft HS, Davies GJ (2020) Rational design of mechanism-based inhibitors and activity-based probes for the identification of retaining α-l-arabinofuranosidases. J Am Chem Soc 142(10):4648–4662. https://doi.org/10.1021/jacs.9b11351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paës G, O’Donohue MJ (2006) Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus. J Biotechnol 125(3):338–350. https://doi.org/10.1016/j.jbiotec.2006.03.025

    Article  CAS  PubMed  Google Scholar 

  17. Dos Santos CR, de Giuseppe PO, de Souza FHM, Zanphorlin LM, Domingues MN, Pirolla RAS, Honorato RV, Tonoli CCC, de Morais MAB, de Matos Martins VP, Fonseca LM, Büchli F, de Oliveira PSL, Gozzo FC, Murakami MT (2018) The mechanism by which a distinguishing arabinofuranosidase can cope with internal di-substitutions in arabinoxylans. Biotechnol Biofuels 11:223. https://doi.org/10.1186/s13068-018-1212-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Höcker B, Jürgens C, Wilmanns M, Sterner R (2001) Stability, catalytic versatility and evolution of the (beta alpha) (8)-barrel fold. Curr Opin Biotechnol 12(4):376–381. https://doi.org/10.1016/s0958-1669(00)00230-5

    Article  PubMed  Google Scholar 

  19. Lagaert S, Pollet A, Courtin CM, Volckaert G (2014) β-xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnol Adv 32(2):316–332. https://doi.org/10.1016/j.biotechadv.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10(6):563–569. https://doi.org/10.1038/nmeth.2474

    Article  CAS  PubMed  Google Scholar 

  23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1085

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46(W1):W95–W101. https://doi.org/10.1093/nar/gky418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  PubMed  Google Scholar 

  27. Wang S, Yang B, Ross RP, Stanton C, Zhao J, Zhang H, Chen W (2020) Comparative genomics analysis of Lactobacillus ruminis from different niches. Genes 11(1):70. https://doi.org/10.3390/genes11010070

    Article  CAS  PubMed Central  Google Scholar 

  28. Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2):1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  PubMed  Google Scholar 

  29. Kračun SK, Schückel J, Westereng B, Thygesen LG, Monrad RN, Eijsink VGH, Willats WGT (2015) A new generation of versatile chromogenic substrates for high-throughput analysis of biomass-degrading enzymes. Biotechnol Biofuels 8:70. https://doi.org/10.1186/s13068-015-0250-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(1):81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  31. Grant JR, Arantes AS, Stothard P (2012) Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics 13:202. https://doi.org/10.1186/1471-2164-13-202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han SR, Jang SM, Chi YM, Kim B, Jung SH, Lee YM, Uetake J, Lee JH, Park H, Oh TJ (2020) Complete genome sequence of Sphingobium sp. strain PAMC 28499 reveals a potential for degrading pectin with comparative genomics approach. Genes Genomics 42(9):1087–1096. https://doi.org/10.1007/s13258-020-00976-y

    Article  CAS  PubMed  Google Scholar 

  33. Shi H, Zhang Y, Xu B, Tu M, Wang F (2014) Characterization of a novel GH2 family α-L-arabinofuranosidase from hyperthermophilic bacterium Thermotoga thermarum. Biotechnol Lett 36(6):1321–1328. https://doi.org/10.1007/s10529-014-1493-6

    Article  CAS  PubMed  Google Scholar 

  34. Poria V, Saini JK, Singh S, Nain L, Kuhad RC (2020) Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. Bioresour Technol 304:123019. https://doi.org/10.1016/j.biortech.2020.123019

    Article  CAS  PubMed  Google Scholar 

  35. Eckert K, Schneider E (2003) A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur J Biochem 270(17):3593–3602. https://doi.org/10.1046/j.1432-1033.2003.03744.x

    Article  CAS  PubMed  Google Scholar 

  36. Tu T, Li X, Meng K, Bai Y, Wang Y, Wang Z, Yao B, Luo H (2019) A GH51 α-L-arabinofuranosidase from Talaromyces leycettanus strain JCM12802 that selectively drives synergistic lignocellulose hydrolysis. Microb Cell Fact 18(1):138. https://doi.org/10.1186/s12934-019-1192-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Debeche T, Bliard C, Debeire P, O’Donohue MJ (2002) Probing the catalytically essential residues of the α-L-arabinofuranosidase from Thermobacillus xylanilyticus. Protein Eng 15(1):21–28. https://doi.org/10.1093/protein/15.1.21

    Article  CAS  PubMed  Google Scholar 

  38. Miyazaki K (2005) Hyperthermophilic α-L-arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9(5):399–406. https://doi.org/10.1007/s00792-005-0455-2

    Article  CAS  PubMed  Google Scholar 

  39. Dumbrepatil A, Park JM, Jung TY, Song HN, Jang MU, Han NS, Kim TJ, Woo EJ (2012) Structural analysis of α-L-arabinofuranosidase from Thermotoga maritima reveals characteristics for thermostability and substrate specificity. J Microbiol Biotechnol 22(12):1724–1730. https://doi.org/10.4014/jmb.1208.08043

    Article  CAS  PubMed  Google Scholar 

  40. Hoffmam ZB, Oliveira LC, Cota J, Alvarez TM, Diogo JA, de Oliveira NM, Citadini APS, Leite VBP, Squina FM, Murakami MT, Ruller R (2013) Characterization of a hexameric exo-acting GH51 α-L-arabinofuranosidase from the mesophilic Bacillus subtilis. Mol Biotechnol 55(3):260–267. https://doi.org/10.1007/s12033-013-9677-1

    Article  CAS  PubMed  Google Scholar 

  41. Sürmeli Y, İlgü H, Şanlı-Mohamed G (2019) Improved activity of α-L-arabinofuranosidase from Geobacillus vulcani GS90 by directed evolution: Investigation on thermal and alkaline stability. Biotechnol Appl Biochem 66(1):101–107. https://doi.org/10.1002/bab.1702

    Article  CAS  PubMed  Google Scholar 

  42. Shi P, Li N, Yang P, Wang Y, Luo H, Bai Y, Yao B (2010) Gene cloning, expression, and characterization of a Family 51 α-L-arabinofuranosidase from Streptomyces sp. S9. Appl Biochem Biotechnol 162(3):707–718. https://doi.org/10.1007/s12010-009-8816-4

    Article  CAS  PubMed  Google Scholar 

  43. Canakci S, Kacagan M, Inan K, Belduz AO, Saha BC (2008) Cloning, purification, and characterization of a thermostable α-L-arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari. Appl Microbiol Biotechnol 81(1):61–68. https://doi.org/10.1007/s00253-008-1584-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was a part of the project titled “Development of potential antibiotic compounds using polar organism resources (15250103, KOPRI Grant PM20030)”, funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Contributions

T.-J.O. designed and supervised the project. C.-Y.C. and S.-R.H. performed the genome analysis. All authors discussed the results, commented on the manuscript, and approved the manuscript.

Corresponding author

Correspondence to Tae-Jin Oh.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 19 kb)

Supplementary file1 (docx 415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, CY., Han, SR. & Oh, TJ. Complete Genome Sequence of Pedobacter sp. PAMC26386 and Their Low Temperature Application in Arabinose-containing Polysaccharides Degradation. Curr Microbiol 78, 944–953 (2021). https://doi.org/10.1007/s00284-021-02364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02364-5

Navigation