Skip to main content
Log in

Neobacillus sedimentimangrovi sp. nov., a Thermophilic Bacterium Isolated from Mangrove Sediment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Two Gram-stain positive, rod-shaped, endospore-forming, aerobic, thermophilic strains, designated FJAT-2464T and FJAT-52740, were isolated from the sediment collected from Zhangjiang Estuary Mangrove National Nature Reserve in Fujian Province, China. The 16S rRNA gene sequence similarity between strains FJAT-2464T and FJAT-52740 was 100%. The result suggests that strains FJAT-2464T and FJAT-52740 belong to the same genome species, hence only FJAT-2464T was considered for further analysis. Strain FJAT-2464T showed the highest 16S rRNA gene sequence similarities to the type strains of Neobacillus thermocopriae SgZ-7T (99.9%), Neobacillus cucumis AP-6T (97.6%) and Neobacillus drentensis LMG 21831T (97.5%). Growth was observed at 25–65 °C (optimum 60 °C), pH 7.0–8.0 (optimum 8.0) with NaCl tolerance up to 1.0% (w/v) (optimum without NaCl %). The cell-wall peptidoglycan contained meso-diaminopimelic acid and MK-7 was the only respiratory quinone. The major fatty acids were iso-C15:0 and anteiso-C15:0. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified aminophospholipid and unidentified lipids. The average nucleotide identity and digital DNA-DNA hybridization values between strain FJAT-2464T and the most closely related strain N. thermocopriae SgZ-7T was below the threshold value for species delineation. Based on the above results, strain FJAT-2464T represents a novel species of the genus Neobacillus, for which the name Neobacillus sedimentimangrovi sp. nov. is proposed. The type strain is FJAT-2464T (= MCCC 1K04406T = KCTC 43264T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Patel S, Gupta RS (2020) A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 70:406–438

    Article  CAS  PubMed  Google Scholar 

  2. Nagel M, Andreesen JR (1991) Bacillus niacini sp. nov., a nicotinate metabolizing mesophile isolated from soil. Int J Syst Bacteriol 41:134–139

    Article  Google Scholar 

  3. Kämpfer P, Busse HJ, Glaeser SP, Kloepper JW, Hu CH, McInroy JA (2016) Bacillus cucumis sp. nov. isolated from the rhizosphere of cucumber (Cucumis sativus). Int J Syst Evol Microbiol 66:1039–1044

    Article  PubMed  Google Scholar 

  4. Logan NA, Lebbe L, Hoste B, Goris J, Forsyth G, Heyndrickx M, Murray BL, Syme N, Wynn-Williams DD, De Vos P (2000) Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 50:1741–1753

    Article  CAS  PubMed  Google Scholar 

  5. Bittar F, Bibi F, Ramasamy D, Lagier JC, Azhar EI, Jiman-Fatani AA, Al-Ghamdi AK, Nguyen TT, Yasir M, Fournier PE, Raoult D (2015) Non contiguous-finished genome sequence and description of Bacillus jeddahensis sp. nov. Stand Genomic Sci. 10:47

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu B, Liu GH, Hu GH, Chen MC (2014) Bacillus mesonae sp. nov., isolated from the root of Mesona chinensis. Int J Syst Evol Microbiol 64:3346–3352

    Article  PubMed  Google Scholar 

  7. Zhang MY, Cheng J, Cai Y, Zhang TY, Wu YY, Manikprabhu D, Li WJ, Zhang YX (2017) Bacillus notoginsengisoli sp. nov., a novel bacterium isolated from the rhizosphere of Panax notoginseng. Int J Syst Evol Microbiol 67:2581–2585

    Article  CAS  PubMed  Google Scholar 

  8. Han L, Yang G, Zhou X, Yang D, Hu P, Lu Q, Zhou S (2013) Bacillus thermocopriae sp. nov., isolated from a compost. Int J Syst Evol Microbiol 63:3024–3029

    Article  CAS  PubMed  Google Scholar 

  9. Heyrman J, Vanparys B, Logan NA, Balcaen A, Rodríguez-Díaz M, Felske A, De Vos P (2004) Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 54:47–57

    Article  CAS  PubMed  Google Scholar 

  10. Sahoo K, Dhal NK (2009) Potential microbial diversity in mangrove ecosystems: a review. Ind J Mar Sci 38:249–256

    CAS  Google Scholar 

  11. Li P, Li S, Zhang Y, Cheng H, Zhou H, Qiu L, Diao X (2018) Seasonal variation of anaerobic ammonium oxidizing bacterial community and abundance in tropical mangrove wetland sediments with depth. Appl Soil Ecol 130:149–158

    Article  Google Scholar 

  12. Zhu P, Wang Y, Shi T, Zhang X, Huang G, Gong H (2018) Intertidal zonation affects diversity and functional potentials of bacteria in surface sediments: a case study of the Golden Bay mangrove, China. Appl Soil Ecol 130:159–168

    Article  Google Scholar 

  13. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  14. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  15. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  16. Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 21–41

    Google Scholar 

  17. Chen YG, Cui XL, Pukall R, Li HM, Yang YL, Xu LH, Wen ML, Peng Q, Jiang CL (2007) Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332

    Article  CAS  PubMed  Google Scholar 

  18. Narsing Rao MP, Dong ZY, Kan Y, Dong L, Li S, Xiao M, Kang YQ, Zhang K, Li WJ (2020) Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 70:1977–1981

    Article  PubMed  Google Scholar 

  19. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704

    Article  CAS  PubMed  Google Scholar 

  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  22. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  23. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  27. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  28. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  29. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  30. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  31. Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  32. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95

    Article  CAS  Google Scholar 

  33. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  34. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News 20:16

    Google Scholar 

  35. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer rna genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  PubMed  Google Scholar 

  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14(1):60

    Article  Google Scholar 

  39. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  40. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  41. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Auch AF, von Jan M, Klenk HP, Göker M (2010) Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank Prof. Aharon Oren for the nomenclature help.

Funding

This work was financially supported by the Fujian Academy of Agricultural Sciences (DEC201821209, GYPY2019003 and AGP2018-3).

Author information

Authors and Affiliations

Authors

Contributions

RT and QZ designed and performed the experiments. MPNR and G-HL performed the genome analysis and revised the manuscript. J-MC and ML re-checked the manuscript. G-MH helped during sample collection. BL, W-JL and S-GZ supervised the study. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Wen-Jun Li or Shun-Gui Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

We have obtained the appropriate permission from the responsible authorities of Zhangjiang Estuary Mangrove National Nature Reserve, Fujian Province, China, for collecting the samples.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, R., Zhang, Q., Narsing Rao, M.P. et al. Neobacillus sedimentimangrovi sp. nov., a Thermophilic Bacterium Isolated from Mangrove Sediment. Curr Microbiol 78, 1039–1044 (2021). https://doi.org/10.1007/s00284-021-02360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02360-9

Navigation