Skip to main content

Advertisement

Log in

Effects of Chronic Stress on the Fecal Microbiome of Malayan Pangolins (Manis javanica) Rescued from the Illegal Wildlife Trade

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pangolins (scaly anteaters, Pholidota) are among those mammals that are most affected by the international, illegal wildlife trade. Recently, wildlife rescue centers in China became dedicated to rehabilitate confiscated pangolins and prepare them for reintroduction to the wild. Chronic stress is thought to be the main reason for a disturbed microbiota community and a higher mortality rate of pangolin in captivity. In this study, we compared the cortisol levels and the fecal microbiome of Malayan pangolin (Manis javanica) born and reared in captivity (PCB; n = 7) with those rescued from the wildlife trade (PCT; n = 16). Results show that the level of cortisol in PCT was significantly lower than that observed in PCB. There were also significant differences in the composition of the fecal microflora between the two groups, and the diversity of intestinal microbiota was higher in PCB than in PCT. At the phylum level, the bacteria with significant difference between the two groups included Firmicutes and Bacteroides. At the genus level, bacteria such as Bacteroides, Parabacterides, and Clostridium showed significant differences between the two groups. This study proves that chronic stress has a considerable effect on the diversity and composition of fecal microbiota in Malayan pangolin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hilton-Taylor C, Pollock CM, Chanson JS, Butchart SHM, Oldfield TEE, Katariya V (2009) Wildlife in a changing world—an analysis of the 2008 IUCN Red List of Threatened Species. Gland, pp 15–42

  2. Smith KF, Schloegel LM, Rosen GE (2012) Wildlife trade and the spread of disease. In: A. Alonso Aguirre, Richard Ostfeld, Peter Daszak (eds) New directions in conservation medicine: applied cases of ecological health. Oxford University Press, Oxford, pp 151–163

  3. Nijman V (2010) An overview of international wildlife trade from Southeast Asia. Biodivers Conserv 19:1101–1114. https://doi.org/10.1007/s10531-009-9758-4

    Article  Google Scholar 

  4. Zhou ZM, Zhao H, Zhang ZX, Wang ZH, Wang H (2012) Allometry of scales in Chinese pangolins (Manis pentadactyla) and Malayan pangolins (Manis javanica) and application in judicial expertise. Zool Res 33:271–275. https://doi.org/10.3724/SP.J.1141.2012.03271

    Article  Google Scholar 

  5. Hu CM (2016) Overview of big data for pangolin: when will the crazy utilization of pangolin stop? A report prepared by Endangered Species Fund of China Biodiversity Conservation and Green Development Foundation

  6. Xu L, Guan J, Lau W, Xiao Y (2016) An overview of Pangolin trade in China. TRAFFIC Briefing Paper. TRAFFIC, Cambridge, UK, pp 1–10

  7. Wu SB, Liu NF, Zhang YM, Ma GZ (2004) Assessment of threatened status of Chinese Pangolin (Manis pentadactyla). Chin J App Env Biol 10:456–461

    Google Scholar 

  8. Wu SB, Ma GZ (2007) The status and conservation of pangolins in China. TRAFFIC East Asia Newsl 4:1–5

    Google Scholar 

  9. Convention on International Trade in Endangered Species of Wild Flora and Fauna, CITES Appendices I, II and III. 2019. CITES, UNEP, Geneva, Switzerland. https://www.cites.org/eng/app/appendices.php (accessed on 26 November 2019).

  10. Challender D, Willcox DHA, Panjang E, Lim N, Nash H, Heinrich S, Chong J (2019) Manis javanica. The IUCN Red List of Threatened Species. e.T12763A123584856.

  11. Wang H, Zhai Y, Wang H (2016) The interpretation of wildlife protection law of the People’s Republic of China. China Legal Publishing House, Beijing

    Google Scholar 

  12. Wang H, Zhang X, Yue Z (2016) Interpretation of the law of the People’s Republic of China on the protection of wild animals. China Democracy and Law Press, Beijing

    Google Scholar 

  13. Hua L, Gong S, Wang F, Li W, Ge Y, Li X, Hou F (2015) Captive breeding of pangolins: current status, problems and future prospects. ZooKeys 507:99–114. https://doi.org/10.3897/zookeys.507.6970

    Article  Google Scholar 

  14. Zhou ZM, Zhou Y, Newman C, Macdonald DW (2014) Scaling up pangolin protection in China. Front Ecol Environ 12:97–98. https://doi.org/10.1890/14.WB.001

    Article  Google Scholar 

  15. CITES (Convention on International Trade in Endangered Species of Wild Flora and Fauna) Resolution Conf. 1997. Disposal of confiscated live specimens of species included in the Appendices (https://cites.org/eng/res/10/10-07R15.php). 10.7 (Rev. CoP15).

  16. Zhou ZM, Newman C, Buesching CD, Macdonald DW, Zhou YB (2016) Rescued wildlife in China remains at risk. Science 353:999. https://doi.org/10.1126/science.aah4291

    Article  CAS  PubMed  Google Scholar 

  17. Baker SE, Cain R, van Kesteren F, Zommers ZA, D’Cruze N, Macdonald DW (2013) Rough trade: animal welfare in the global wildlife trade. Bioscience 63:928–938. https://doi.org/10.1525/bio.2013.63.12.6

    Article  Google Scholar 

  18. Wicker LV, Van Thai N, Phuong TQ (2008) A long way from home: the health status of Asian pangolins confiscated from the illegal wildlife trade in Viet Nam. In Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia

  19. Hafiz SM, Marina H, Afzan AW, Chong J (2012) Ectoparasite from confiscated Malayan pangolin (Manis javanica Desmarest) in Peninsular Malaysia. In: UMT 11th international annual symposium on sustainability science and management. Terengganu, Malaysia. pp 9–11

  20. Heath ME, Vanderlip SL (1988) Biology, husbandry, and veterinary care of captive Chinese pangolins (Manis pentadactyla). Zoo Biol 7:293–312. https://doi.org/10.1002/zoo.1430070402

    Article  Google Scholar 

  21. Yang CW, Chen S, Chang CY, Lin MF, Block E, Lorentsen R, Chin JSC, Dierenfeld ES (2007) History and dietary husbandry of pangolins in captivity. Zoo Biol 26:223–230. https://doi.org/10.1002/zoo.20134

    Article  PubMed  Google Scholar 

  22. Aziz Q, Thompson DG (1998) Brain-gut axis in health and disease. Gastroenterology 14:559–578. https://doi.org/10.1016/S0016-5085(98)70540-2

    Article  Google Scholar 

  23. Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014. https://doi.org/10.1053/j.gastro.2009.01.075

    Article  PubMed  Google Scholar 

  24. Zheng F, Zhu H, Zhou J, Ji YF, Zhang BB, Huang F, Wu XJ (2018) Effect of chronic mild unpredictable stress on the composition of intestinal microbiota in mice. Chin Pharmacol Bull 34:58–63

    Google Scholar 

  25. Challender DWS (2011) Asian pangolins: Increasing affluence driving hunting pressure. TRAFFIC Bulletin 23:92–93

    Google Scholar 

  26. Davit-Béal T, Tucker AS, Sire JY (2009) Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J Anat 214:477–501. https://doi.org/10.1111/j.1469-7580.2009.01060.x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L, Andersson AF (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566. https://doi.org/10.1136/gutjnl-2012-303249

    Article  CAS  PubMed  Google Scholar 

  28. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  29. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and webbased tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  32. Clarke KR, Gorley RN (2006) Primer v6: User Manual/Tutorial. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  33. Franceschini MD, Rubenstein DI, Low B, Romero LM (2008) Fecal glucocorticoid metabolite analysis as an indicator of stress during translocation and acclimation in an endangered large mammal, the Grevy’s zebra. Anim Conserv 11:263–269. https://doi.org/10.1111/j.1469-1795.2008.00175.x

    Article  Google Scholar 

  34. Linklater WL, MacDonald EA, Flamand JRB, Czekala NM (2010) Declining and low fecal corticoids are associated with distress, not acclimation to stress, during the translocation of African rhinoceros. Anim Conserv 13:104–111. https://doi.org/10.1111/j.1469-1795.2009.00308.x

    Article  Google Scholar 

  35. Yang LL, Wang WX, Huang SL, Wang Y, Wronski T, Deng HQ, Lu J (2019) Individual stress responses of white rhinoceros (Ceratotherium simum) to transport: implication for a differential management. Glob Ecol Conserv 17:e00588. https://doi.org/10.1016/j.gecco.2019.e00588

    Article  Google Scholar 

  36. Viljoen JJ, Ganswindt A, Toit JTD, Langbauer WR (2008) Translocation stress and faecal glucocorticoid metabolite levels in free-ranging African savanna elephants. S Afr J Wildl Res 38:146–152. https://doi.org/10.3957/0379-4369-38.2.146

    Article  Google Scholar 

  37. Miller GE, Chen E, Zhou ES (2007) If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol Bull 133:25–45. https://doi.org/10.1037/0033-2909.133.1.25

    Article  PubMed  Google Scholar 

  38. Li YM, Hu XL, Yang S, Zhou JT, Zhang TX, Qi L, Sun XN, Fan MY, Xu SH, Cha MH et al (2017) Comparative analysis of the gut microbiota composition between captive and wild forest musk deer. Front Microbiol 8:1705. https://doi.org/10.3389/fmicb.2017.01705

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li YM, Zhang K, Liu Y, Li K, Hu DF, Wronsk T (2019) Community Composition and Diversity of Intestinal Microbiota in Captive and Reintroduced Przewalski’s Horse (Equus ferus przewalskii). Front Microbiol 10:1821. https://doi.org/10.3389/fmicb.2019.01821

    Article  PubMed  PubMed Central  Google Scholar 

  40. Frick JS, Autenrieth IB (2012) The gut microflora and its variety of roles in health and disease. Between pathogenicity and commensalism. Springer, Berlin, pp 273–289

    Chapter  Google Scholar 

  41. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131. https://doi.org/10.1038/nrmicro1817

    Article  CAS  PubMed  Google Scholar 

  42. Wu HJ, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3:4–14. https://doi.org/10.4161/gmic.19320

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kamada N, Chen GY, Inohara N, Gabriel N (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690. https://doi.org/10.1038/ni.2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma JE, Jiang HY, Li LM, Zhang XJ, Li GY, Li HM, Jin XJ, Chen JP (2018) The fecal metagenomics of Malayan Pangolins identifies an extensive adaptation to myrmecophagy. Front Microbiol 9:2793. https://doi.org/10.3389/fmicb.2018.02793

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chatelier EL, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546. https://doi.org/10.1038/nature12506

    Article  CAS  PubMed  Google Scholar 

  46. Challender DWS, Thai NV, Jones M, May L (2012) Time-budgets and activity patterns of captive Sunda pangolins (Manis javanica). Zoo Biol 31:206–218. https://doi.org/10.1002/zoo.20381

    Article  PubMed  Google Scholar 

  47. Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, McCarthy JJ, Girguis PR (2015) Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun 6:8285. https://doi.org/10.1038/ncomms9285

    Article  CAS  PubMed  Google Scholar 

  48. Delsuc F, Metcalf JL, Wegener PL, Song SJ, González A, Knight R (2014) Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol 23:1301–1317. https://doi.org/10.1111/mec.12501

    Article  CAS  PubMed  Google Scholar 

  49. Vaaje-Kolstad G, Bunaes AC, Mathiesen G, Eijsink VG (2009) The chitinolytic system of Lactococcus lactis ssp. lactis comprises a nonprocessive chitinase and a chitin-binding protein that promotes the degradation of α- and β-chitin. FEBS J 276:2402–2415. https://doi.org/10.1111/j.1742-4658.2009.06972.x

    Article  CAS  PubMed  Google Scholar 

  50. Yang CW, Chou CS, Chao MS (1999) The feeding of the Chinese Pangolin (Manis pentadactyla) at Taipei Zoo. AZA Annual Proceedings 501–507.

  51. Yu J, Zhao J, Song Y, Zhang J, Yu Z, Zhang H, Sun Z (2018) Comparative genomics of the herbivore gut symbiont lactobacillus reuteri reveals genetic diversity and lifestyle adaptation. Front microbiol 9:1151. https://doi.org/10.3389/fmicb.2018.01151

    Article  PubMed  PubMed Central  Google Scholar 

  52. Inoue R, Tsukahara T, Nakanishi N, Ushida K (2005) Development of the intestinal microbiota in the piglet. J Gen Appl Microbiol 51:257–265. https://doi.org/10.2323/jgam.51.257

    Article  CAS  PubMed  Google Scholar 

  53. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun 25:397–407. https://doi.org/10.1016/j.bbi.2010.10.023

    Article  CAS  PubMed  Google Scholar 

  54. Heath M, Coulson IAN (1997) Home range size and distribution in a wild population of Cape pangolins (Manis temminckii) in north-west Zimbabwe. Afr J Ecol 35:94–109. https://doi.org/10.1111/j.1365-2028.1997.080-89080.x

    Article  Google Scholar 

  55. Wu SB, Liu NF, Ma GZ, Xu ZR, Chen H (2003) Habitat selection by Chinese pangolin (Manis pentadactyla) in winter in Dawuling Natural Reserve. Mammalia 67:493–502. https://doi.org/10.1515/mamm-2003-0403

    Article  Google Scholar 

  56. Lim NTL, Ng PKL (2007) Home range, activity cycle and natal den usage of a female Sunda pangolin Manis javanica (Mammalia: Pholidota) in Singapore. Endangered Species Res 3:1–8. https://doi.org/10.3354/esr00032

    Article  Google Scholar 

Download references

Funding

This study was funded by Natural Science Foundation of Guangxi Province (Grant No. 2018GXNSFAA294066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yimeng Li or Torsten Wronski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Hu, D., Li, K. et al. Effects of Chronic Stress on the Fecal Microbiome of Malayan Pangolins (Manis javanica) Rescued from the Illegal Wildlife Trade. Curr Microbiol 78, 1017–1025 (2021). https://doi.org/10.1007/s00284-021-02357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02357-4

Navigation