Skip to main content

Advertisement

Log in

“Effect of Subinhibitory Concentrations of Some Antibiotics and Low Doses of Gamma Radiation on the Cytotoxicity and Expression of Colibactin by an Uropathogenic Escherichia coli isolate”

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Colibactin and cytotoxic necrotizing factor 1 (Cnf 1) are cyclomodulins secreted by uropathogenic E. coli. In this study, uropathogenic E. coli expressing colibactin and Cnf 1 was exposed to antibiotics subMICs and gamma radiation to investigate their effects on its cytotoxicity and expression of colibactin. The test isolate was exposed to three subMIC levels of levofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole and ceftriaxone and irradiated with gamma rays at 10 and 24.4 Gy. The cytotoxicity for either antibiotic or gamma rays treated cultures was measured using MTT assay and the expression of colibactin encoding genes was determined by RT-PCR. Treatment with fluoroquinolones nearly abolished the cytotoxicity of E. coli isolate and significantly downregulated clbA gene expression at the tested subMICs (P ≤ 0.05) while trimethoprim/sulfamethoxazole treated cultures exerted significant downregulation of clbA and clbQ genes at 0.5 MIC only (P ≤ 0.05). Ceftriaxone treated cultured exhibited reduction in the cytotoxicity and insignificant effects on expression of clbA, clbQ and clbM genes. On contrast, significant upregulation in the expression of clbA and clbQ genes was observed in irradiated cultures (P ≤ 0.05). Fluoroquinolones reduced both the cytotoxicity of UPEC isolate and colibactin expression at different subMICs while ceftriaxone at subMICs failed to suppress the expression of genotoxin, colibactin, giving an insight to the risks associated upon their choice for UTI treatment. Colibactin expression was enhanced by gamma irradiation at doses resembling these received during pelvic radiotherapy which might contribute to post-radiotherapy complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dubois D, Delmas J, Cady A, Robin F, Sivignon A, Oswald E, Bonnet R (2010) Cyclomodulins in urosepsis strains of Escherichia coli. J Clin Microbiol 48:2122–2129. https://doi.org/10.1128/JCM.02365-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, De Vallée A, Déchelotte P, Darcha C, Pezet D, Bonnet R (2014) Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol 20:6560. https://doi.org/10.3748/wjg.v20.i21.6560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Faïs T, Delmas J, Barnich N, Bonnet R, Dalmasso G (2018) Colibactin: more than a new bacterial toxin. Toxins 10:151. https://doi.org/10.3390/toxins10040151

    Article  CAS  PubMed Central  Google Scholar 

  4. Fabbri A, Travaglione S, Ballan G, Loizzo S, Fiorentini C (2013) The cytotoxic necrotizing factor 1 from E. coli: a janus toxin playing with cancer regulators. Toxins 5:1462–1474. https://doi.org/10.3390/toxins5081462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nougayrède J, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851. https://doi.org/10.1126/science.1127059

    Article  CAS  PubMed  Google Scholar 

  6. Feng Y, Mannion A, Madden C, Swennes A, Townes C, Byrd C, Marini R, Fox J (2017) Cytotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor (CNF) colonize laboratory macaques. Gut Pathog 9:71. https://doi.org/10.1186/s13099-017-0220-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lax AJ (2007) New genotoxin shows diversity of bacterial attack mechanisms. Trends Mol Med 13:91–93. https://doi.org/10.1016/j.molmed.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  8. Lu M, Chen Y, Chiang M, Wang Y, Hsiao P, Huang Y, Lin C, Cheng C, Liang C, Lai Y (2017) Colibactin contributes to the hypervirulence of pks+ K1 CC23 Klebsiella pneumoniae in mouse meningitis infections. Front Cell Infect Microbiol 7:103. https://doi.org/10.3389/fcimb.2017.00103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garcia A, Mannion A, Feng Y, Madden C, Bakthavatchalu V, Shen Z, Ge Z, Fox J (2016) Cytotoxic Escherichia coli strains encoding colibactin colonize laboratory mice. Microbes Infect 18:777–786. https://doi.org/10.1016/j.micinf.2016.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, Sauvanet P, Darcha C, Dechelotte P, Bonnet M, Pezet D, Wodrich H, Darfeuille-Michaud A, Bonnet R (2014) Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 63:1932–1942. https://doi.org/10.1136/gutjnl-2013-305257

    Article  CAS  PubMed  Google Scholar 

  11. Morgan R, Saleh S, Farrag H, Aboulwafa M (2019) Prevalence and pathologic effects of colibactin and cytotoxic necrotizing factor-1 (Cnf 1) in Escherichia coli: experimental and bioinformatics analyses. Gut Pathog 11:22. https://doi.org/10.1186/s13099-019-0304-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang E, Stafford R (2002) National patterns in the treatment of urinary tract infections in women by ambulatory care physicians. Arch Intern Med 162(1):41–47. https://doi.org/10.1001/archinte.162.1.41

    Article  PubMed  Google Scholar 

  13. Kallen A, Welch H, Sirovich B (2006) Current antibiotic therapy for isolated urinary tract infections in women. Arch Intern Med 166(6):635–639. https://doi.org/10.1001/archinte.166.6.635

    Article  PubMed  Google Scholar 

  14. Stahlmann R (2003) Children as a special population at risk–quinolones as an example for xenobiotics exhibiting skeletal toxicity. Arch Toxicol 77(1):7–11. https://doi.org/10.1007/s00204-002-0412-0

    Article  CAS  PubMed  Google Scholar 

  15. Paintsil E (2013) Update on recent guidelines for the management of urinary tract infections in children: the shifting paradigm. Curr Opin Pediatr 25(1):88–94. https://doi.org/10.1097/mop.0b013e32835c14cc

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guneysel O, Onur O, Erdede M, Denizbasi A (2009) Trimethoprim/sulfamethoxazole resistance in urinary tract infections. J Emerg Med 36(4):338–341. https://doi.org/10.1016/j.jemermed.2007.08.068

    Article  PubMed  Google Scholar 

  17. Bergeron M (1995) Treatment of pyelonephritis in adults. Med Clin N Am 79(3):619–649. https://doi.org/10.1016/S0025-7125(16)30060-8

    Article  CAS  PubMed  Google Scholar 

  18. Braga P, Sala M, dal Sasso M (1999) Pharmacodynamic effects of subinhibitory concentrations of rufloxacin on bacterial virulence factors. Antimicrob Agents Chemother 43:1013–1019. https://doi.org/10.1128/AAC.43.5.1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Turnidge J (1999) Pharmacokinetics and pharmacodynamics of fluoroquinolones. Drugs 58:29–36. https://doi.org/10.2165/00003495-199958002-00006

    Article  CAS  PubMed  Google Scholar 

  20. Preston S, Drusano G, Berman A, Fowler C, Chow A, Dornseif B, Reichl V, Natarajan J, Corrado M (1998) Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA 279:125–129. https://doi.org/10.1001/jama.279.2.125

    Article  CAS  PubMed  Google Scholar 

  21. Mandell L, Afnan M (1991) Mechanisms of interaction among subinhibitory concentrations of antibiotics, human polymorphonuclear neutrophils, and gram-negative bacilli. Antimicrob Agents Chemother 35:1291–1307. https://doi.org/10.1128/AAC.35.7.1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baskin H, Doğan Y, Bahar IH, Yuluğ N (2002) Effect of subminimal inhibitory concentrations of three fluoroquinolones on adherence of uropathogenic strains of Escherichia coli. Int J Antimicrob Agents 19:79–82. https://doi.org/10.1016/S0924-8579(01)00469-1

    Article  CAS  PubMed  Google Scholar 

  23. Yuk J, Nightingale C, Quintiliani R (1989) Clinical pharmacokinetics of ceftriaxone. Clin Pharmacokinet 17:223–235. https://doi.org/10.2165/00003088-198917040-00002

    Article  CAS  PubMed  Google Scholar 

  24. Nassar F, Rahal E, Sabra A, Matar G (2013) Effects of subinhibitory concentrations of antimicrobial agents on Escherichia coli O157: H7 Shiga toxin release and role of the SOS response. Foodborne Pathog Dis 10:805–812. https://doi.org/10.1089/fpd.2013.1510

    Article  CAS  PubMed  Google Scholar 

  25. Cairns J, Becks L, Jalasvuori M, Hiltunen T (2017) Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution. Philos Trans R Soc Lond B Biol Sci 372:20160040. https://doi.org/10.1098/rstb.2016.0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sud I, Feingold D (1975) Detection of agents that alter the bacterial cell surface. Antimicrob Agents Chemother 8:34–37. https://doi.org/10.1128/AAC.8.1.34

    Article  CAS  PubMed Central  Google Scholar 

  27. Breines D, Burnham J (1994) Modulation of Escherichia coli type 1 fimbrial expression and adherence to uroepithelial cells following exposure of logarithmic phase cells to quinolones at subinhibitory concentrations. J Antimicrob Chemother 34:205–221. https://doi.org/10.1093/jac/34.2.205

    Article  CAS  PubMed  Google Scholar 

  28. da Silva E, Mansano E, Miazima E, Rodrigues F, Hernandes L, Svidzinski T (2017) Radiation used for head and neck cancer increases virulence in Candida tropicalis isolated from a cancer patient. BMC Infect Dis 17:783. https://doi.org/10.1186/s12879-017-2879-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shuford R, Dulaney C, Burnett O III, Byram K, McDonald A (2016) Evaluating the role of urinalysis for suspected cystitis in women undergoing pelvic radiotherapy. Int J Gynecol Cancer. https://doi.org/10.1097/IGC.0000000000000714

    Article  PubMed  PubMed Central  Google Scholar 

  30. van Vliet M, Harmsen H, de Bont E, Tissing W (2010) The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog 6:e1000879. https://doi.org/10.1371/journal.ppat.1000879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Webb G, Brooke R, De Silva A (2013) Chronic radiation enteritis and malnutrition. J Dig Dis 14:350–357. https://doi.org/10.1111/1751-2980.12061

    Article  CAS  PubMed  Google Scholar 

  32. Prasad K, Pradhan S, Datta N (1995) Urinary tract infection in patients of gynecological malignancies undergoing external pelvic radiotherapy. Gynecol Oncol 57:380–382. https://doi.org/10.1006/gyno.1995.1158

    Article  CAS  PubMed  Google Scholar 

  33. Packey C, Ciorba M (2010) Microbial influences on the small intestinal response to radiation injury. Curr Opin Gastroenterol 26:88. https://doi.org/10.1097/mog.0b013e3283361927

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wiegand I, Hilpert K, Hancock R (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  35. Atsumi T, Fujimoto E, Furuta M, Kato M (2014) Effect of gamma-ray irradiation on Escherichia coli motility. Cent Eur J Biol 9:909–914. https://doi.org/10.2478/s11535-014-0332-z

    Article  CAS  Google Scholar 

  36. Edmondson J, Armstrong L, Martinez A (1988) A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. J Tissue Cult Methods 11:15–17

    Article  CAS  Google Scholar 

  37. Homburg S, Oswald E, Hacker J, Dobrindt U (2007) Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol Lett 275:255–262. https://doi.org/10.1111/j.1574-6968.2007.00889.x

    Article  CAS  PubMed  Google Scholar 

  38. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  39. Martin P, Marcq I, Magistro G, Penary M, Garcie C, Payros D, Boury M, Olier M, Nougayrède J, Audebert M (2013) Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli. PLoS Pathog 9:e1003437. https://doi.org/10.1371/journal.ppat.1003437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sonstein S, Burnham J (1993) Effect of low concentrations of quinolone antibiotics on bacterial virulence mechanisms. Diagn Microbiol Infect Dis 16:277–289. https://doi.org/10.1016/0732-8893(93)90078-L

    Article  CAS  PubMed  Google Scholar 

  41. Soto S, De Anta M, Vila J (2006) Quinolones induce partial or total loss of pathogenicity islands in uropathogenic Escherichia coli by SOS-dependent or-independent pathways, respectively. Antimicrob Agents Chemother 50:649–653. https://doi.org/10.1128/AAC.50.2.649-653.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith A, Pennefather P, Kaye S, Hart C (2001) Fluoroquinolones: place in ocular therapy. Drugs 61(6):747–761. https://doi.org/10.2165/00003495-200161060-00004

    Article  CAS  PubMed  Google Scholar 

  43. Wright S, Wrenn K, Haynes M (1999) Trimethoprim-sulfamethoxazole resistance among urinary coliform isolates. J Gen Intern Med 14(10):606–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taieb F, Petit C, Nougayrède J, Oswald E (2016) The enterobacterial genotoxins: cytolethal distending toxin and colibactin. EcoSal Plus. https://doi.org/10.1128/ecosalplus.esp-0008-2016

    Article  PubMed  Google Scholar 

  45. Mousa J, Yang Y, Tomkovich S, Shima A, Newsome R, Tripathi P, Oswald E, Bruner S, Jobin C (2016) MATE transport of the E. coli-derived genotoxin colibactin. Nat Microbiol 1:15009. https://doi.org/10.1038/nmicrobiol.2015.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuroda T, Tsuchiya T (2009) Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 1794:763–768. https://doi.org/10.1016/j.bbapap.2008.11.012

    Article  CAS  PubMed  Google Scholar 

  47. Guntaka N, Healy A, Crawford J, Herzon S, Bruner S (2017) Structure and functional analysis of ClbQ, an unusual intermediate-releasing thioesterase from the colibactin biosynthetic pathway. ACS Chem Biol 12:2598–2608. https://doi.org/10.1021/acschembio.7b00479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Piatti G, Mannini A, Balistreri M, Schito A (2008) Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J Clin Microbiol 46:480–487. https://doi.org/10.1128/JCM.01488-07

    Article  CAS  PubMed  Google Scholar 

  49. Thi T, López E, Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Guelfo J, Castañeda-García A, Blázquez J (2011) Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J Antimicrob Chemother 66:531–538. https://doi.org/10.1093/jac/dkq496

    Article  CAS  PubMed  Google Scholar 

  50. Barriere S, Flaherty J (1984) Third-generation cephalosporins: a critical evaluation. J Clin Pharm Ther 3:351–373

    CAS  Google Scholar 

  51. Booth C, Siemens D, Li G, Peng Y, Kong W, Berman D, Mackillop W (2014) Curative therapy for bladder cancer in routine clinical practice: a population-based outcomes study. Clin Oncol 26:506–514. https://doi.org/10.1016/j.clon.2014.05.007

    Article  CAS  Google Scholar 

  52. Zilli T, Scorsetti M, Zwahlen D, Franzese C, Förster R, Giaj-Levra N, Koustouvelis N, Bertaut A, Zimmermann M, D’Agostino G (2018) ONE SHOT-single shot radiotherapy for localized prostate cancer: study protocol of a single arm, multicenter phase I/II trial. Radiat Oncol 13:166. https://doi.org/10.1186/s13014-018-1112-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Min J, Lee C, Gu M (2003) Gamma-radiation dose-rate effects on DNA damage and toxicity in bacterial cells. Radiat Environ Biophys 42:189–192. https://doi.org/10.1007/s00411-003-0205-8

    Article  PubMed  Google Scholar 

  54. Li B, Smith P, Horvath D Jr, Romesberg F, Justice S (2010) SOS regulatory elements are essential for UPEC pathogenesis. Microbes infect 12:662–668. https://doi.org/10.1016/j.micinf.2010.04.009

    Article  CAS  PubMed  Google Scholar 

  55. Min J, Lee CW, Moon SH, LaRossa RA, Gu MB (2000) Detection of radiation effects using recombinant bioluminescent Escherichia coli strains. Radiat Environ Biophys 39(1):41–45. https://doi.org/10.1007/pl00007683

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in the study conception and design equally. RM, conducted the practical work and collected the results, SS, supervised the practical work, HF, revised the first draft of the manuscript and MA revised the final version of the manuscript and produced in its final form. All authors have read and approved the final form of the manuscript. All Authors follow the ICMJE criteria.

Corresponding author

Correspondence to Mohammad M. Aboulwafa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, R.N., Farrag, H.A., Aboulwafa, M.M. et al. “Effect of Subinhibitory Concentrations of Some Antibiotics and Low Doses of Gamma Radiation on the Cytotoxicity and Expression of Colibactin by an Uropathogenic Escherichia coli isolate”. Curr Microbiol 78, 544–557 (2021). https://doi.org/10.1007/s00284-020-02331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02331-6

Navigation