Skip to main content
Log in

Pseudomonas pratensis sp. nov., Isolated from Grassland Soil from Inner Mongolia, China

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A novel bacterial strain, designated MHJ-10JT, was isolated from a soil sample obtained from a grassland in Inner Mongolia, China. MHJ-10JT strain could grow at 4–37 °C (optimum: 30 °C) and pH 4–9 (optimum: pH 6), as well as in the presence of 0–6% NaCl (optimum: 1%). Cells of strain MHJ-10JT are Gram-negative, rod-shaped, and motile. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MHJ-10JT was most closely related to Pseudomonas lutea OK2T (98.5% 16S rRNA gene sequence similarity). The values of the average nucleotide identities (ANI) and digital DNA–DNA hybridization (dDDH) between strain MHJ-10JT and its related species were all below 80.5% and 24.4%, respectively, which are significantly lower than the thresholds of 95% for ANI and 70% for DDH for species delineation. The genomic G + C content of the MHJ-10JT strain is 64.8 mol%. Based on the phenotypic, genotypic, chemotaxonomic, and phylogenetic analyses, strain MHJ-10JT can be assigned to the genus Pseudomonas. In this study, we propose that strain MHJ-10JT be classified as a novel species belonging to the genus Pseudomonas with the species name Pseudomonas pratensis sp. nov. The type strain of the proposed novel species is MHJ-10JT (= KCTC 82206T = CGMCC 17322T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Migula W (1895) Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238

    Google Scholar 

  2. Parte AC (2018) LPSN – List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68(6):1825–1829. https://doi.org/10.1099/ijsem.0.002786

    Article  PubMed  Google Scholar 

  3. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramosgonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56(1):743–768. https://doi.org/10.1146/annurev

    Article  CAS  PubMed  Google Scholar 

  4. Rao Q, Liu Y, Chen C, Lin Q, Ren L, Huang M, Tu J, Luo T (2019) Pseudomonas ovata sp. nov., isolated from the skin of the tail of farmed murray cod (Maccullochella peelii peelii) with a profound ulceration. Curr Microbiol 76(10):1168–1174. https://doi.org/10.1007/s00284-019-01729-1

    Article  CAS  PubMed  Google Scholar 

  5. Frasson D, Opoku M, Picozzi T, Torossi T, Balada S, Smits THM, Hilber U (2017) Pseudomonas wadenswilerensis sp. nov., and Pseudomonas reidholzensis sp. nov., two novel species within the Pseudomonas putida group isolated from forest soil. Int J Syst Evol Microbiol 67(8):2853–2861. https://doi.org/10.1099/ijsem.0.002035

    Article  CAS  PubMed  Google Scholar 

  6. Chavarría M, Kleijn RJ, Sauer U, Pflüger-Grau K, Lorenzo VD (2012) Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. Mbio. https://doi.org/10.1128/mBio.00028-12

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lessie TG, Phibbs PV (1984) Alternative pathways of carbohydrate utilization in pseudomonads. Alternative pathways of carbohydrate utilization in Pseudomonads. Annu Rev Microbiol 38(1):359–388. https://doi.org/10.1146/annurev.mi.38.100184.002043

    Article  CAS  PubMed  Google Scholar 

  8. López JR, Diéguez AL, Alejandra D, Elena DLR, Roberto DLH, Navas JI, Toranzo AE, Romalde JL (2012) Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). Int J Syst Evol Microbiol 62(Pt 4):874. https://doi.org/10.1099/ijs.0.030601-0

    Article  CAS  PubMed  Google Scholar 

  9. Manassila M, Nuntagij A, Kotepong S, Boonkerd N, Teaumroong N (2007) Characterization and monitoring of selected rhizobial strains isolated from tree legumes in Thailand. Afr J Biotechnol. https://doi.org/10.5897/AJB2007.000-2196

    Article  Google Scholar 

  10. Rygaard AM, Thogersen MS, Nielsen KF, Gram L, Bentzon-Tilia M (2017) Effects of gelling agent and extracellular signaling molecules on the culturability of marine bacteria. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00243-17

    Article  PubMed  PubMed Central  Google Scholar 

  11. He WH, Wang YN, Du X, Zhou Y, Jia B, Bian J, Liu SJ, Chen GC (2012) Pseudomonas linyingensis sp. nov.: a novel bacterium isolated from wheat soil subjected to long-term herbicides application. Curr Microbiol 65(5):595–600. https://doi.org/10.1007/s00284-012-0187-3

    Article  CAS  PubMed  Google Scholar 

  12. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178(4535):703–703. https://doi.org/10.1038/178703a0

    Article  CAS  PubMed  Google Scholar 

  13. Sasser M (1990) Identifcation of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark, DE

    Google Scholar 

  14. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  15. Kates M (1972) Techniques of lipidology: isolation, analysis and identification of lipids. Lab Tech Biochem Mol Biol 3(18):0151–0155. https://doi.org/10.1016/S0075-7535(08)70544-8

    Article  Google Scholar 

  16. Bao Z, Sato Y, Fujimura R, Ohta H (2014) Alsobacter metallidurans gen. nov., sp. nov., a thallium-tolerant soil bacterium in the order Rhizobiales. Int J Syst Evol Microbiol 64:775–780. https://doi.org/10.1099/ijs.0.054783-0

    Article  CAS  PubMed  Google Scholar 

  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saitou N, Imanishi T (1989) Relative efficiencies of the fitch-margoliash, maximum-parsimony, maximum-likelihood, minimumevolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Dent Press J Orthod 17(1):108–114. https://doi.org/10.1093/oxfordjournals.molbev.a040572

    Article  Google Scholar 

  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–2187. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  21. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J, García-Valdés E (2012) Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol. https://doi.org/10.1016/j.syapm.2012.08.007

    Article  PubMed  Google Scholar 

  22. Pascual J, Macian MC, Arahal DR, Garay E, Pujalte MJ (2010) Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol 60(1):154–165. https://doi.org/10.1099/ijs.0.010702-0

    Article  CAS  PubMed  Google Scholar 

  23. Kim M, Oh H-S, Park S-C, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64(2):346–351. https://doi.org/10.1099/ijs.0.059774-0

    Article  PubMed  Google Scholar 

  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu X-W, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68(1):461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  25. Yoon SH, Ha SM, Kwon S, Lim J, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meierkolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14(1):60–60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  27. Javier P, Marina GL, Bills GF, Olga G (2015) Pseudomonas granadensis sp. nov., a new bacterial species isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Int J Syst Evol Microbiol 65(2):625–632. https://doi.org/10.1099/ijs.0.069260-0

    Article  CAS  Google Scholar 

  28. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  Google Scholar 

  29. Zhong ZP, Liu Y, Hou TT, Liu HC, Zhou YG, Wang F, Liu ZP (2015) Pseudomonas salina sp. nov., isolated from a salt lake. Int J Syst Evol Microbiol 65(9):2846–2851. https://doi.org/10.1099/ijs.0.000341

    Article  CAS  PubMed  Google Scholar 

  30. Peix A (2003) Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 53(6):2067–2072. https://doi.org/10.1099/ijs.0.02703-0

    Article  CAS  PubMed  Google Scholar 

  31. Menéndez E, Ramírez-Bahena MH, Fabryová A, Igual JM, Benada O, Mateos PF, Peix A, Kolařík M, García-Fraile P (2015) Pseudomonas coleopterorum sp. nov. a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int J Syst Evol Microbiol 65(9):2852–2858. https://doi.org/10.1099/ijs.0.000344

    Article  CAS  PubMed  Google Scholar 

  32. Behrendt U, Ulrich A, Schumann P (1999) A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov. Int J Syst Bacteriol 49(1):297–308. https://doi.org/10.1099/00207713-49-1-297

    Article  CAS  PubMed  Google Scholar 

  33. Peix A, Raúl R, Santa-Regina I, Mateos PF, Encarna V (2004) Pseudomonas lutea sp. nov. a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Microbiol 54(3):847–850. https://doi.org/10.1099/ijs.0.02966-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was support by the Science and Technology Major Project on Lakes of Inner Mongolia grant (ZDZX2018054), National Natural Science Foundation of China grants (41563009, 41963008), and the Open Project Program of Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau (10000-196106/001/001). We thank Professor Aharon Oren from The Hebrew University of Jerusalem for the help for nomenclature of bacteria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Bao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Shen, L., Shi, J. et al. Pseudomonas pratensis sp. nov., Isolated from Grassland Soil from Inner Mongolia, China. Curr Microbiol 78, 789–795 (2021). https://doi.org/10.1007/s00284-020-02296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02296-6

Navigation