Skip to main content
Log in

Investigation of Clarithromycin Resistance-Associated Mutations and Virulence Genotypes of Helicobacter pylori Isolated from Iranian Population: A Cross-Sectional Study

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antibiotic resistance has brought into question the efficiency of clarithromycin which is a vital component of eradication therapy for Helicobacter pylori infection. The point mutations within the 23S rRNA sequence of H. pylori isolates which contribute to clarithromycin resistance have yet to be fully characterized. This study was aimed to detect clarithromycin resistance-associated mutations and assess the prevalence of key virulence factors of H. pylori among Iranian patients. Amplification of 16S rRNA and glmM genes were done to identify H. pylori. Minimal inhibitory concentration (MIC) of clarithromycin in 82 H. pylori clinical isolates was determined by agar dilution method. Subsequently, various virulence markers including cagA, vacA, sabA, babA, and dupA of H. pylori were identified by PCR. PCR-sequencing was applied to detect point mutations in the 23S rRNA gene. Based on MIC values, 43.9% of H. pylori isolates showed resistance to clarithromycin. The babA and cagA genes were detected in 92.7% and 82.9% of isolates, assigned to be higher than other virulence factors. No significant relationship was found between the H. pylori virulence genotypes and clarithromycin susceptibility (P > 0.05). Analyzing the 23S rRNA sequences revealed A2143G (4/48, 8.3%) and A2142G (3/48, 6.2%) as the most prevalent mutations in clarithromycin-resistant isolates. Additionally, several novel mutations including G2220T, C2248T, A2624C, G2287A, T2188C, G2710C, C2248T, G2269A, and G2224T were also detected among either resistant or susceptible isolates. Our findings revealed the presence of several point mutations in the 23S rRNA gene of H. pylori isolates which may be associated with resistance to clarithromycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Kuo C-H, Hu H-M, Kuo F-C, Hsu P-I, Chen A, Yu F-J (2009) Efficacy of levofloxacin-based rescue therapy for Helicobacter pylori infection after standard triple therapy: a randomized controlled trial. J Antimicrob Chemother 63(5):1017–1024

    CAS  PubMed  Google Scholar 

  2. Singh V, Mishra S, Maurya P, Rao G, Jain AK, Dixit VK (2009) Drug resistance pattern and clonality in H. pylori strains. J Infect Dev Countries 3(02):130–136

    Google Scholar 

  3. Ansari S, Yamaoka Y (2017) Helicobacter pylori BabA in adaptation for gastric colonization. World J Gastroenterol 23(23):4158

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E (2018) Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterol 155(5):1372–1382

    Google Scholar 

  5. Arslan N, Yılmaz Ö, Demiray-Gürbüz E (2017) Importance of antimicrobial susceptibility testing for the management of eradication in Helicobacter pylori infection. World J Gastroenterol 23(16):2854

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vianna JS, Ramis IB, Ramos DF, Von Groll A, Silva PEAd (2016) Drug resistance in Helicobacter pylori. Arq Gastroenterol 53(4):215–223

    PubMed  Google Scholar 

  7. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F (2012) Management of Helicobacter pylori infection: the Maastricht IV/Florence consensus report. Gut 61(5):646–664

    CAS  PubMed  Google Scholar 

  8. Schmitt BH, Regner M, Mangold KA, Thomson RB Jr, Kaul KL (2013) PCR detection of clarithromycin-susceptible and-resistant Helicobacter pylori from formalin-fixed, paraffin-embedded gastric biopsies. Mod Pathol 26(9):1222–1227

    CAS  PubMed  Google Scholar 

  9. Marques AT, Vítor JMB, Santos A, Oleastro M, Vale FF (2020) Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches. Microb Genom 6(3):e000344

    PubMed Central  Google Scholar 

  10. Agudo S, Pérez-Pérez G, Alarcón T, López-Brea M (2010) High prevalence of clarithromycin-resistant Helicobacter pylori strains and risk factors associated with resistance in Madrid, Spain. J Clin Microbiol 48(10):3703–3707

    PubMed  PubMed Central  Google Scholar 

  11. Chen J, Ye L, Jin L, Xu X, Xu P, Wang X (2018) Application of next-generation sequencing to characterize novel mutations in clarithromycin-susceptible Helicobacter pylori strains with A2143G of 23S rRNA gene. Ann Clin Microbiol Antimicrob 17(1):10

    PubMed  PubMed Central  Google Scholar 

  12. Thung I, Aramin H, Vavinskaya V, Gupta S, Park J, Crowe S (2016) The global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharm Ther 43(4):514–533

    CAS  Google Scholar 

  13. Lee JY, Kim N, Kim MS, Choi YJ, Lee JW, Yoon H (2014) Factors affecting first-line triple therapy of Helicobacter pylori including CYP2C19 genotype and antibiotic resistance. Dig Dis Sci 59(6):1235–1243

    CAS  PubMed  Google Scholar 

  14. Malfertheiner P, Megraud F et al (2017) Management of Helicobacter pylori infection—the Maastricht V/Florence consensus report. Gut 66(1):6–30

    CAS  PubMed  Google Scholar 

  15. Chang W-L, Yeh Y-C, Sheu B-S (2018) The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci 25(1):1–9

    CAS  Google Scholar 

  16. Yadegar A, Mohabati Mobarez A, Zali MR (2019) Genetic diversity and amino acid sequence polymorphism in Helicobacter pylori CagL hypervariable motif and its association with virulence markers and gastroduodenal diseases. Cancer Med 8(4):1619–1632

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Boyanova L, Markovska R, Yordanov D, Gergova G, Mitov I (2016) Clarithromycin resistance mutations in Helicobacter pylori in association with virulence factors and antibiotic susceptibility of the strains. Microb Drug Resist 22(3):227–232

    CAS  PubMed  Google Scholar 

  18. Oktem-Okullu S, Cekic-Kipritci Z, Kilic E, Seymen N, Mansur-Ozen N, Sezerman U (2020) Analysis of correlation between the Seven Important Helicobacter pylori (H. pylori) Virulence Factors and Drug Resistance in Patients with Gastritis. Gastroenterol Res Prac. https://doi.org/10.1155/2020/3956838

    Article  Google Scholar 

  19. Yadegar A, Mobarez AM, Alebouyeh M, Mirzaei T, Kwok T, Zali MR (2014) Clinical relevance of cagL gene and virulence genotypes with disease outcomes in a Helicobacter pylori infected population from Iran. World J Microbiol Biotechnol 30(9):2481–2490

    CAS  PubMed  Google Scholar 

  20. Farzi N, Yadegar A, Sadeghi A, AsadzadehAghdaei H, MarianSmith S, Raymond J (2019) High prevalence of antibiotic resistance in Iranian Helicobacter pylori Isolates: importance of functional and mutational analysis of resistance genes and virulence genotyping. J Clin Med 8(11):2004

    CAS  PubMed Central  Google Scholar 

  21. Yadegar A, Alebouyeh M, Lawson AJ, Mirzaei T, Mojarad EN, Zali MR (2014) Differentiation of non-pylori Helicobacter species based on PCR–restriction fragment length polymorphism of the 23S rRNA gene. World J Microbiol Biotechnol 30(6):1909–1917

    CAS  PubMed  Google Scholar 

  22. Farzi N, Yadegar A, Aghdaei HA, Yamaoka Y, Zali MR (2018) Genetic diversity and functional analysis of oipA gene in association with other virulence factors among Helicobacter pylori isolates from Iranian patients with different gastric diseases. Infect Genet Evol 60:26–34

    CAS  PubMed  Google Scholar 

  23. Hall TA (1999) editor BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series [London]: Information Retrieval Ltd., c1979-c2000.

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sezgin O, Aydın MK, Özdemir AA, Kanık AE (2019) Standard triple therapy in Helicobacter pylori eradication in Turkey: systematic evaluation and meta-analysis of 10-year studies. Turk J Gastroenterol 30(5):420

    PubMed  PubMed Central  Google Scholar 

  26. Abadi ATB (2017) Resistance to clarithromycin and gastroenterologist’s persistence roles in nomination for Helicobacter pylori as high priority pathogen by World Health Organization. World J Gastroenterol 23(35):6379

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18(3):318–327

    PubMed  Google Scholar 

  28. Graham D (2018) H. pylori Management in ASEAN: the Bangkok Consensus Report. J Gastroenterol Hepatol 33(1):37–56

    PubMed  Google Scholar 

  29. Kuo Y-T, Liou J-M, El-Omar EM, Wu J-Y, Leow AHR, Goh KL (2017) Primary antibiotic resistance in Helicobacter pylori in the Asia-Pacific region: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2(10):707–715

    PubMed  Google Scholar 

  30. Khademi F, Sahebkar AH, Vaez H, Arzanlou M, Peeridogaheh H (2017) Characterization of clarithromycin-resistant Helicobacter pylori strains in Iran: a systematic review and meta-analysis. J Glob Antimicrob Resist 10:171–178

    PubMed  Google Scholar 

  31. Vala MH, Eyvazi S, Goudarzi H, Sarie HR, Gholami M (2016) Evaluation of clarithromycin resistance among Iranian Helicobacter pylori isolates by E-test and real-time polymerase chain reaction methods. Jundishapur J Microbiol 9(5):e60063

    Google Scholar 

  32. Georgopoulos SD, Michopoulos S, Rokkas T, Apostolopoulos P, Giamarellos E, Kamberoglou D (2020) Hellenic consensus on Helicobacter pylori infection. Ann Gastroenterol 33(2):105

    PubMed  PubMed Central  Google Scholar 

  33. Matta AJ, Zambrano DC, Pazos AJ (2018) Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations. World J Gastroenterol 24(14):1531

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Versalovic J, Osato MS, Spakovsky K, Dore MP, Reddy R, Stone GG (1997) Point mutations in the 23S rRNA gene of Helicobacter pylori associated with different levels of clarithromycin resistance. J Antimicrob Chemother 40(2):283–286

    CAS  PubMed  Google Scholar 

  35. Keshavarz Azizi Raftar S, Moniri R, Saffari M, Razavi Zadeh M, Arj A, Mousavi SGA (2015) The Helicobacter pylori resistance rate to clarithromycin in Iran. Microb Drug Resist 21(1):69–73

    CAS  PubMed  Google Scholar 

  36. Iwamoto A, Tanahashi T, Okada R, Yoshida Y, Kikuchi K, Keida Y (2014) Whole-genome sequencing of clarithromycin resistant Helicobacter pylori characterizes unidentified variants of multidrug resistant efflux pump genes. Gut Pathog 6(1):27

    PubMed  PubMed Central  Google Scholar 

  37. Taneike I, Nami A et al (2009) Analysis of drug resistance and virulence-factor genotype of Irish Helicobacter pylori strains: is there any relationship between resistance to metronidazole and cagA status? Aliment Pharmacol Ther 30(7):784–790

    CAS  PubMed  Google Scholar 

  38. Garcia GT, Aranda KR, Gonçalves ME, Cardoso SR, Iriya K, Silva NP (2010) High prevalence of clarithromycin resistance and cagA, vacA, iceA2, and babA2 genotypes of Helicobacter pylori in Brazilian children. J Clin Microbiol 48(11):4266–4268

    PubMed  PubMed Central  Google Scholar 

  39. Feliciano O, Gutierrez O, Valdés L, Fragoso T, Calderin AM, Valdes AE (2015) Prevalence of Helicobacter pylori vacA, cagA, and iceA genotypes in Cuban patients with upper gastrointestinal diseases. BioMed Res Int. https://doi.org/10.1155/2015/753710

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brennan DE, Dowd C, O’Morain C, McNamara D, Smith SM (2018) Can bacterial virulence factors predict antibiotic resistant Helicobacter pylori infection? World J Gastroenterol 24(9):971

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Karabiber H, Selimoglu MA, Otlu B, Yildirim O, Ozer A (2014) Virulence factors and antibiotic resistance in children with Helicobacter pylori gastritis. J Pediatr Gastr Nutr 58(5):608–612

    CAS  Google Scholar 

  42. Khani S, Abadi ATB, Mobarez AM (2019) Clarithromycin-susceptible but virulent Helicobacter pylori strains infecting Iranian patients’ stomachs. Infect Drug Resist 12:3415

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Šterbenc A, Jarc E, Poljak M, Homan M (2019) Helicobacter pylori virulence genes. World J Gastroenterol 25(33):4870

    PubMed  PubMed Central  Google Scholar 

  44. Shiota S, Nguyen LT, Murakami K, Kuroda A, Mizukami K, Okimoto T (2012) Association of helicobacter pylori dupA with the failure of primary eradication. J Clin Gastroenterol 46(4):297

    PubMed  PubMed Central  Google Scholar 

  45. Pakbaz Z, Shirazi MH, Ranjbar R (2013) Frequency of sabA gene in Helicobacter pylori strains isolated from patients in Tehran, Iran. Iran Red Crescent Med J 15(9):767

    PubMed  PubMed Central  Google Scholar 

  46. Godoy APO, Ribeiro ML, Benvengo YHB, Vitiello L, Miranda MdCB, Mendonça S (2003) Analysis of antimicrobial susceptibility and virulence factors in Helicobacter pylori clinical isolates. BMC Gastroenterol 3(1):20

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the sample collection team at Taleghani hospital and the staffs in Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Funding

This study was financially supported by a research grant (no. RIGLD 878) from Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

HA performed the susceptibility testing and PCR assay for H. pylori strains. NM provided the draft of the manuscript. AY worked on concept and design of the study, data analysis and interpretation, and writing of manuscript. AY and KB performed the sequence analysis. AY and SMS critically revised the manuscript. AS and MRZ provided clinical consultation for the study. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Abbas Yadegar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical Approval

The study protocol was approved by the Institutional Ethical Review Committee of the Research Institute for Gastroenterology and Liver Diseases at Shahid Beheshti University of Medical Sciences (Project No. IR.SBMU.RIGLD.REC.1395.878).

Consent to Participate

All participants and/or their legal guardians signed written informed consent before enrollment in the study.

Consent for Publication

All authors approved the final version of the manuscript and the authorship list.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary file1 (DOCX 4669 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavifard, H., Mirzaei, N., Yadegar, A. et al. Investigation of Clarithromycin Resistance-Associated Mutations and Virulence Genotypes of Helicobacter pylori Isolated from Iranian Population: A Cross-Sectional Study. Curr Microbiol 78, 244–254 (2021). https://doi.org/10.1007/s00284-020-02295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02295-7

Navigation