Skip to main content
Log in

Altererythrobacter segetis sp. nov., Isolated from Farmland Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-negative bacterium, designated YJ20T, was isolated from rhizosphere soil of a spinach farmland at Shinan in Korea. Strain YJ20T was found to be aerobic, non-motile rods which can grow at 10–33 °C (optimum, 28 °C), at pH 6.5–8.5 (optimum, pH 6.5–7.5) and in the absence of NaCl. The 16S rRNA gene sequence analysis showed that strain YJ20T belongs to the genus Altererythrobacter with moderate sequence similarities to Altererythrobacter dongtanensis KCTC 22672T (96.8%), Altererythrobacter soli MN-1T (96.6%) and Altererythrobacter xinjiangensis S3-63T (96.5%). The phylogenomic analysis based on the whole-genome sequence demonstrated that strain YJ20T formed a distinct phyletic line with Altererythrobacter soli MN-1T and Altererythrobacter salegens XY-R17T showing average nucleotide identity (ANI) values of 79.4 and 77.5%, respectively. The predominant ubiquinone was identified as Q-10, and the major fatty acids were C17:1 ω6c, C18:1 ω7c and C15:0 2-OH. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidycholin, sphingoglycolipid, an unidentified glycolipid, an unidentified phospholipid and an unidentified lipid. The G+C content of the genome was determined to be 66.3 mol%. On the basis of phenotypic, chemotaxonomic properties and phylogenetic and phylogenomic analyses in this study, strain YJ20T is considered to represent a novel species in the genus Altererythrobacter, for which the name Altererythrobacter segetis sp. nov. is proposed. The type strain is YJ20T (= KACC 19554T = NBRC 113199T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

R2A agar:

Reasoner’s 2A agar

dDDH:

Digital DNA–DNA hybridization

ANI:

Average nucleotide identity

References

  1. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG, Kim SJ, Sato T, Kato C (2007) Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 57:2207–2211

    CAS  PubMed  Google Scholar 

  2. Xue X, Zhang K, Cai F, Dai J, Wang Y, Rahman E, Peng F, Fang C (2012) Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 62:28–32

    CAS  PubMed  Google Scholar 

  3. Xue H, Piao CG, Guo MW, Wang LF, Fang W, Li Y (2016) Description of Altererythrobacter aerius sp. nov., isolated from air, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 66:4543–4548

    CAS  PubMed  Google Scholar 

  4. Lee SD (2019) Altererythrobacter lutipelagi sp. nov., isolated from a tidal mudflat, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 69:1980–1985

    CAS  PubMed  Google Scholar 

  5. Kumar NR, Nair S, Langer S, Busse HJ, Kämpfer P (2008) Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 58:839–844

    PubMed  Google Scholar 

  6. Srinivasan S, Joo ES, Kim EB, Jeon SH, Jung HY et al (2016) Altererythrobacter terrae sp. nov., isolated from mountain soil. Antonie Van Leeuwenhoek 109:397–404

    CAS  PubMed  Google Scholar 

  7. Zhang W, Yuan X, Feng Q, Zhang R, Zhao X et al (2016) Altererythrobacter buctense sp. nov., isolated from mudstone core. Antonie Van Leeuwenhoek 109:793–799

    CAS  PubMed  Google Scholar 

  8. Zhao Q, Li HR, Han QQ, He AL, Nie CY, Wang SM, Zhang JL (2017) Altererythrobacter soli sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 67:454–459

    CAS  PubMed  Google Scholar 

  9. Liang X, Lin H, Wang K, Liao Y, Lai Q, Xu Y, Wang C (2017) Altererythrobacter salegens sp. nov., a slightly halophilic bacterium isolated from surface sediment. Int J Syst Evol Microbiol 67:909–913

    CAS  PubMed  Google Scholar 

  10. Yan ZF, Lin P, Won KH, Yang JE, Li CT et al (2017) Altererythrobacter deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 67:3806–3811

    CAS  PubMed  Google Scholar 

  11. Liao H, Li Y, Zhang M, Lin X, Lai Q, Tian Y (2017) Altererythrobacter mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 67:4851–4856

    CAS  PubMed  Google Scholar 

  12. Yuan N, Zeng Y, Feng H, Yu Z, Huang Y (2017) Altererythrobacter xixiisoli sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 67:3655–3659

    CAS  PubMed  Google Scholar 

  13. Ma H, Ren H, Huang L, Luo Y (2018) Altererythrobacter flavus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 68:2265–2270

    CAS  PubMed  Google Scholar 

  14. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  PubMed  Google Scholar 

  16. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  17. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  18. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Google Scholar 

  19. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  21. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  22. Rosselló-Móra R, Amann R (2015) Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 38:209–216

    PubMed  Google Scholar 

  23. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, International Committee on Systematic Bacteriology (1987) Report of the ad hoc committee on reconciliation of approches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Google Scholar 

  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    PubMed  PubMed Central  Google Scholar 

  26. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al (2014) The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214

    CAS  PubMed  Google Scholar 

  27. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    CAS  PubMed  Google Scholar 

  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Google Scholar 

  30. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182

    PubMed  PubMed Central  Google Scholar 

  31. Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668

    Google Scholar 

  33. Murray RGE, Doetsch RN, Robinow F (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 21–41

    Google Scholar 

  34. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  35. Leifson E (1963) Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

  37. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101, vol 1502. MIDI Inc., Newark

    Google Scholar 

  38. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yabuuchi E, Kosako Y, Naka T, Suzuki S, Yano I (1999) Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al., 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol 43:339–349

    CAS  PubMed  Google Scholar 

  40. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119

    CAS  PubMed  Google Scholar 

  41. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al (2017) Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al (2007) Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by J-CL and K-SW. The first draft of the manuscript was written by J-CL and all authors commented on initial versions of the manuscript. All authors read and approved the final manuscript. Conceptualization, methodology, formal analysis and investigation and writing-original draft preparation were done by J-CL. Writing-review and editing, funding acquisition, resources and supervision were performed by K-SW.

Corresponding author

Correspondence to Kyung-Sook Whang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JC., Whang, KS. Altererythrobacter segetis sp. nov., Isolated from Farmland Soil. Curr Microbiol 78, 389–396 (2021). https://doi.org/10.1007/s00284-020-02294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02294-8

Navigation