Skip to main content
Log in

Effect of Amoxicillin on Nitrogen Oxidation Bacteria Present in Activated Sludge: Respirometry Investigation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Amoxicillin (AMX) is one of the most widely used antibiotics in the world and its presence in wastewater is of great concern for its potential to bacteria selection. However, there is still a gap about the toxicity effect of AMX in nitrifier biomass from activated sludge (AS). This study is based on the implementation of respirometric tests in batches in order to evaluate the toxic effluent toxicity in the nitrification process of AS. The tests were conducted by comparing respiration rates with effluent containing ammonia nitrogen (NH4+-N) and nitrite nitrogen (NO2-N) called “reference” and batches containing toxic effluent doped with different concentrations of AMX here called “process.” Results with effluent containing concentrations greater than 100 mg L−1 showed that AMX negatively affected the specific growth rate (μm) of ammonia-oxidizing bacteria (AOB) (from 0.50 d−1 to 0.13 d−1) and nitrite-oxidizing bacteria (NOB) (from 0.64 d−1 to 0.15 d−1). Although there is no total inhibition of populations, these μm values are limiting for a feasible development of the nitrification process in AS systems. The removal of AMX decreased from 99 to 37% (liquid phase) when the concentration of AMX increased (20 mg L−1 to 200 mg L−1). A decrease in the microbial community AOB and NOB was observed through fluorescent in situ hybridization (FISH), corroborating the results of respirometry. In summary, the study showed that the inhibition of the AS nitrification process occurs in the presence of high concentrations of AMX and the most susceptible group are the NOB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

µm :

Maximum specific growth constant for nitrifying bacteria (days)

AOB:

Ammonia-oxidizing bacteria

bn :

Constant decay for the nitrifying organisms (adopted: 0.04 × 1.03(t20))

fn :

Fraction of AS that remains an endogenous residue

Kn :

Monod half-saturation constants (mg L1)

Nc :

Nitrification capacity (mg L1)

Nl :

Nitrogen concentration in excess sludge (mg L1)

NOB:

Nitrite-oxidizing bacteria

OUR:

Oxygen uptake rate (mgO2 L1 h1)

OURend :

Oxygen uptake rate to endogenous respiration (mgO2 L1 h1)

OURexo :

Oxygen uptake rate to exogenous respiration (mgO2 L1 h1)

OURn :

Oxygen uptake rate to nitrogen compounds (mgO2 L1 h1)

Qeff :

Effluent flow (L d1)

Qinf :

Influent flow (L d1)

Rh :

Hydraulic retention time (days)

rn :

Constant specific substrate utilization (mgN mgVSS1 d1)

Rs :

Sludge age (days)

S:

Substrate ammonia nitrogen (NH4+-N) or nitrite nitrogen (NO2-N) (mg L1)

TKN:

Total kjeldahl nitrogen (mg L1)

TKNeff :

TKN concentration in the effluent (mg L1)

TKNinf :

TKN concentration in the influent (mg L1)

Vr :

Reactor volume (L)

Xn :

Concentration of active nitrifying organisms in volatile biomass (mgVSS L1)

Xv :

Concentration of VSS in the aeration tank (mg L1)

Yn :

Cell yield coefficient for nitrifying bacteria (adopted: 0.1 kgVSS kgN1

References

  1. Klein E, Boeckel T, Martinez E, Pant S, Gandra S, Levin S, Goossens H, Laxminarayan R (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. PNAS 115(15):E3463–E3470. https://doi.org/10.1073/pnas.1717295115

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization (2018) WHO fact sheet on antimicrobial resistance. World Health Organization, Geneva. https://www.who.int/mediacentre/. Accessed 10 Oct 2020

  3. Pennente K, Lyle J, Gardocki B (2015) Global medicines use in 2020: outlook and implications. IMS Institute for Healthcare Informatics, Parsippany, NJ

    Google Scholar 

  4. Kotwani A, Holloway K (2011) Trends in antibiotic use among outpatients in New Delhi, India. BMC Infect Dis 11(1):99. https://doi.org/10.1186/1471-2334-11-99

    Article  PubMed  PubMed Central  Google Scholar 

  5. Githinji LJM, Musey MK, Ankumah RO (2010) Evaluation of the fate of ciprofloxacin and AMX in domestic wastewater. Water Air Soil Pollut 219(1–4):191–201. https://doi.org/10.1007/s11270-010-0697-1

    Article  CAS  Google Scholar 

  6. Elizalde-Velázquez A, Gómez-Oliván LM, Galar-Martínez M, Islas-Flores H, Dublán-García O, SanJuan-Reyes N (2016) AMX in the aquatic environment, Its fate and environmental risk. Environmental health risk - Hazardous factors to living species. https://doi.org/https://doi.org/10.5772/62049.

  7. Bound JP, Voulvoulis N (2004) Pharmaceuticals in the aquatic environment––a comparison of risk assessment strategies. Chemosphere 56(11):1143–1155. https://doi.org/10.1016/j.chemosphere.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  8. Loos R, Marinov D, Sanseverino I, Napierska D, Lettieri T (2018) Review of the 1st watch list under the water framework directive and recommendations for the 2nd watch List. Publications office of the European union, Luxembourg. https://doi.org/https://doi.org/10.2760/614367

  9. World Health Organization (2019) Executive summary: the selection and use of essential medicines 2019: report of the 22nd WHO expert committee on the selection and use of essential medicines: WHO Headquarters, Geneva, 1–5 April 2019 (No. WHO/MVP/EMP/IAU/2019.05). World Health Organization.

  10. Ribeiro RP, Bueno RF, Piveli RP, Kligerman DC, de Mello WZ, Oliveira JL (2017) The response of nitrous oxide emissions to different operating conditions in activated sludge wastewater treatment plants in southeastern Brazil. Water Sci Technol 76(9):2337–2349. https://doi.org/10.2166/wst.2017.399

    Article  CAS  PubMed  Google Scholar 

  11. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214(6):442–448. https://doi.org/10.1016/j.ijheh.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  12. Matsuo H, Sakamoto H, Arizono K, Shinohara R (2011) Behavior of pharmaceuticals in waste water treatment plant in Japan. Bull Environ Contam Toxicol 87(1):31–35. https://doi.org/10.1007/s00128-011-0299-7

    Article  CAS  PubMed  Google Scholar 

  13. Rubiano JC, Perdomo, MP, Pramparo L (2017) Estudio respirométrico de la biodegradación de Diclofenaco. Entre Ciencia e Ingeniería. 11(21):9–13 https://doi.org/https://doi.org/10.31908/19098367.3268

  14. Avella AC, Essendoubi M, Louvet JN, Görner T, Sockalingum GD, Pons MN, Manfait M, de Donato P (2010) Activated sludge behaviour in a batch reactor in the presence of antibiotics: study of extracellular polymeric substances. Water Sci Technol 61(12):3147–3155. https://doi.org/10.2166/wst.2010.924

    Article  CAS  PubMed  Google Scholar 

  15. Xing BS, Jin RC (2018) Inhibitory effects of heavy metals and antibiotics on nitrifying bacterial activities in mature partial nitritation. Chemosphere 200:437–445. https://doi.org/10.1016/j.chemosphere.2018.02.132

    Article  CAS  PubMed  Google Scholar 

  16. Xia Y, Wen X, Zhang B, Yang Y (2018) Diversity and assembly patterns of activated sludge microbial communities: a review. Biotechnol Adv 36(4):1038–1047. https://doi.org/10.1016/j.biotechadv.2018.03.005

    Article  PubMed  Google Scholar 

  17. Mao D, Yu S, Rysz M, Luo Y, Yang F, Li F, Hou J, Mu Q, Alvarez PJJ (2015) Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res 85:458–466. https://doi.org/10.1016/j.watres.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  18. Meng L, Li X, Wang X, Ma K, Liu G, Zhang J (2017) Amoxicillin effects on functional microbial community and spread of antibiotic resistance genes in amoxicillin manufacture wastewater treatment system. J Environ Sci 61:110–117. https://doi.org/10.1016/j.jes.2017.09.020

    Article  CAS  Google Scholar 

  19. Liu N, Hou T, Yin H, Han L, Huang G (2019) Effects of amoxicillin on nitrogen transformation and bacterial community succession during aerobic composting. J Hazard Mater 362:258–265. https://doi.org/10.1016/j.jhazmat.2018.09.028

    Article  CAS  PubMed  Google Scholar 

  20. Yu N, Zhao C, Ma B, Li S, She Z, Guo L, Zhang Q, Zhao Y, Jin C, Gao M (2019) Impacto da ampicilina na remoção de nitrogênio, comunidade microbiana e atividade enzimática do lodo ativado. Biores Technol 272:337–345. https://doi.org/10.1016/j.biortech.2018.10.048

    Article  CAS  Google Scholar 

  21. Busto RV, Roberts J, Hunter C, Escudero A, Helwig K, Coelho LHG (2020) Mechanistic and ecotoxicological studies of AMX removal through anaerobic degradation systems. Ecotoxicol Environ Saf 192:110207. https://doi.org/10.1016/j.ecoenv.2020.110207

    Article  CAS  PubMed  Google Scholar 

  22. Matsubara ME, Helwig K, Hunter C, Roberts J, Subtil EL, Coelho LHG (2020) AMX removal by pre-denitrification membrane bioreactor (A/O-MBR): performance evaluation, degradation by-products, and antibiotic resistant bacteria. Ecotoxicol Environ Saf 192:110258. https://doi.org/10.1016/j.ecoenv.2020.110258

    Article  CAS  PubMed  Google Scholar 

  23. Katipoglu-Yazan T, Merlin C, Pons M, Ubay-Cokgor E (2015) Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture. Water Res 72:1–12. https://doi.org/10.1016/j.watres.2014.12.041

    Article  CAS  Google Scholar 

  24. Bueno RF, Piveli RP, Campos F (2019) Extended aeration activated sludge process operated under low dissolved oxygen concentration: Kinetic behavior of nitrifying heterotrophic and autotrophic bacteria. Lodo ativado com aeração prolongada operado sob baixa concentração de oxigênio dissolvido: comportamento cinético das bactérias heterotróficas e autotróficas nitrificantes. Engenharia Sanitária e Ambiental, 24(5), 939–947. https://doi.org/https://doi.org/10.1590/s1413-41522019134260.

  25. van Haandel AC, Marais GVR (1999) The behavior of the activated sludge system: theory and applications for projects and operations. Campina Grade.

  26. Bueno RF, Piveli RP, Campos F, Sobrinho PA (2018) Simultaneous nitrification and denitrification in the activated sludge systems of continuous flow. Environ Technol 39(20):2641–2652. https://doi.org/10.1080/09593330.2017.1363820

    Article  CAS  PubMed  Google Scholar 

  27. APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington, DC

    Google Scholar 

  28. APHA (1998) Standard methods for examination of water and wastewaters (sections 2541B-E, 5310B, 4500-NH3 H, 4500-NB and 4500-PH). American Public Health Association, Washington, DC

    Google Scholar 

  29. APHA (2005) Standard methods for the examination of water and wastewater. Method 4110 C. Determination of anions by ion chromatography. American Public Health Association, Washington, DC

  30. Winkler MKH, Bassin JP, Kleerebezem R, Sorokin DY, van Loosdrecht MCM (2012) Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Appl Microbiol Biotechnol 94:1657–1666. https://doi.org/10.1007/s00253-012-4126-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001) In situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants. Appl Environ Microb 67:5273–5284. https://doi.org/10.1128/AEM.67.11.5273-5284.2001

    Article  CAS  Google Scholar 

  32. Wagner M, Rath G, Koops HP, Flood J, Amann R (1996) In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci Technol 34(1–2):237–244

    Article  CAS  Google Scholar 

  33. Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microb 62:2156–2162. https://doi.org/10.1128/AEM.62.6.2156-2162.1996

    Article  CAS  Google Scholar 

  34. Akashdeep SO, Yanyan J, Huiqun Z, Samir KK, Hui L (2019) Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review. Environ Sci Technol 53(13):7234–7264. https://doi.org/10.1021/acs.est.9b01131

    Article  CAS  Google Scholar 

  35. Kim S, Eichhorn P, Jensen JN, Weber AS, Aga DS (2005) Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol 39(15):5816–5823. https://doi.org/10.1021/es050006u

    Article  CAS  PubMed  Google Scholar 

  36. Yi K, Wang D, Yang Q, Li X, Chen H, Sun J, An H, Wang L, Deng Y, Liu J, Zeng G (2017) Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Sci Total Environ 605–606:368–375. https://doi.org/10.1016/j.scitotenv.2017.06.215

    Article  CAS  PubMed  Google Scholar 

  37. Zheng D, Chang Q, Li Z, Gao M, She Z, Wang X, Guo L, Zhao Y, Jin C, Gao F (2016) Performance and microbial community of a sequencing biofilm reactor treating synthetic mariculture wastewater under long-term exposure to norfloxacin. Bioresour Technol 222(2016):139–147. https://doi.org/10.1016/j.biortech.2016.09.114

    Article  CAS  PubMed  Google Scholar 

  38. Li Z, Chang Q, Li S, Gao M, She Z, Guo L, Zhao Y, Jin C, Zheng D, Xu Q (2017) Impact of sulfadiazine on performance and microbial community of a sequencing batch biofilm reactor treating synthetic mariculture wastewater. Bioresour Technol 235:122–130. https://doi.org/10.1016/j.biortech.2017.03.113

    Article  CAS  PubMed  Google Scholar 

  39. Wang S, Gao M, Wang Z, She Z, Jin C, Zhao Y, Guo L, Chang O (2015) Effects of oxytetracycline on performance and microbial community of an anoxic-aerobic sequencing batch reactor treating mariculture wastewater. RSC Adv 5:53893–53904. https://doi.org/10.1039/C5RA06302G

    Article  CAS  Google Scholar 

  40. Kassotaki E, Buttiglieri G, Ferrando-Climent L, Rodriguez-Roda I, Pijuan M (2016) Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products. Water Res 94:111–119. https://doi.org/10.1016/j.watres.2016.02.022

    Article  CAS  PubMed  Google Scholar 

  41. Metcalf, Eddy (2013) Wastewater engineering: treatment and resource recovery. 5th ed. Mcgraw-Hill Education.

Download references

Acknowledgements

We would like to thank the Basic Sanitation Company of the State of São Paulo-SABESP for authorizing the use of activated sludge from WWTP-Parque Andreese to carry out the study.

Author information

Authors and Affiliations

Authors

Contributions

JKF: Investigation, Writing—original draft. ACSC: Investigation, Writing—original draft. MYK: Investigation, Writing—original draft. ABO: Methodology, Writing—review & editing. LHC: Supervision, Methodology. ELS: Supervision, Methodology. RFB: Conceptualization, Supervision, Writing—review & editing. The authors declare that there is no conflict of interest in the published information.

Corresponding author

Correspondence to Rodrigo de Freitas Bueno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, J.K., Conceição, A.C.S., Kohatsu, M.Y. et al. Effect of Amoxicillin on Nitrogen Oxidation Bacteria Present in Activated Sludge: Respirometry Investigation. Curr Microbiol 78, 167–178 (2021). https://doi.org/10.1007/s00284-020-02287-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02287-7

Navigation